Supplementary Information for

11-Mercaptoundecanoic acid capped gold nanoclusters as a fluorescence probe for specific detection of folic acid *via* ratiometric fluorescence strategy

Lei Meng^{a,b}, Jian-Hang Yin^a, Yaqing Yuan^a, , Na Xu^{a*}

^aCollege of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin

132022, China.

^bCollege of Science, Jilin Institute of Chemical Technology, Jilin 132022, China.

*E-mail: <u>xn_1216@163.com</u> (Na Xu)

Figures and caption

Fig.S1 Stern–Volmer plot of fluorescence quenching, where the I_0 and I represents fluorescence intensity of the AuNCs@MUA in absence and presence of FA, respectively. Inset is quenching constant (K_{sv}) obtained from Stern–Volmer equation.

Fig.S2 Size distributions of AuNCs@MUA in absence and presence of FA

Ref.	materials	Linear range	LOD	response strategy
S1	CdTe QDs@MIPs	0-20 μΜ	31.1 nM	Turn-off (I_{536})
S2	Carbon QDs	0-30 µM	0.5 nM	Turn-off (I_{440})
S 3	LDHs	1-200 µM	100 nM	Turn-off (I_{506})
S4	CdS QDs	0.72 μM		Turn-off (I_{505})
S5	ZnSe QDs	0-250 μM	7 nM	Turn-on (I_{480})
	ZnSe@ZnS QDs	0-250 μM	5 nM	Turn-on (I_{490})
S6	PVA- CdTe		42.29 ng/mL	ratiometric
	QDs			(I_{442}/I_{363})
S7	AuNCs@BSA		18.3 ng/mL	Turn-off (I_{629})
S 8	AuNPs & AuNCs	0.11 - 2.27 μM	290 nM	Turn-off (I_{625})
This work	AuNCs@MUA	0-20 μΜ	26 nM	ratiometric
				(I_{446}/I_{436})

Table S1. Research papers available up to now concerning different fluorescenceprobes for detection of FA

References in ESI

[S1] A.A. Ensafi, P. Nasr-Esfahani, B. Rezaei, Simultaneous detection of folic acid and methotrexate by an optical sensor based on molecularly imprinted polymers on dual-color CdTe quantum dots, Analytica Chimica Acta, 996 (2017) 64-73.

[S2] M. Wang, Y. Jiao, C. Cheng, J. Hua, Y. Yang, Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum, Analytical and Bioanalytical Chemistry, 409 (2017) 7063-7075.

[S3] P. Liu, D. Liu, Y. Liu, L. Li, ANTS-anchored Zn-Al-CO₃-LDH particles as fluorescent probe for sensing of folic acid, Journal of Solid State Chemistry, 241 (2016) 164-172.

[S4] S. Kundu, S. Maiti, T.K. Das, D. Ghosh, C.N. Roy, A. Saha, Exploiting the biomimetic and luminescence properties of multivalent dendrimer-semiconductor nanohybrid materials in the ultra-low level determination of folic acid, Analyst, 142 (2017) 2491-2499.

[S5] I.A. Mir, K. Rawat, P.R. Solanki, H.B. Bohidar, ZnSe core and ZnSe@ZnS coreshell quantum dots as platform for folic acid sensing, Journal of Nanoparticle Research, 19 (2017) 260.

[S6] S. Chakravarty, P. Dutta, S. Kalita, N. Sen Sarma, PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching, Sensors and Actuators B: Chemical, 232 (2016) 243-250.

[S7] B. Hemmateenejad, F. Shakerizadeh-shirazi, F. Samari, BSA-modified gold

nanoclusters for sensing of folic acid, Sensors and Actuators B: Chemical, 199 (2014) 42-46.

[S8] X. Yan, H. Li, B. Cao, Z. Ding, X. Su, A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection, Microchimica Acta, 182 (2015) 1281-1288.