Hexagonal VO₂ Particles: Synthesis, Mechanism and Thermochromic Properties

Hui Yan Xu^{a,b}, Ke Wei Xu^{a,c}, Fei Ma^{a,b,*}, Paul K Chu^{b,*}

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

^b Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

^c Department of Physics and Opt-electronic Engineering, Xi'an University of Arts and Science, Xi'an 710065, Shaanxi, China

*<u>Authors to whom correspondence should be addressed.</u>

Electronic mail: mafei@mail.xjtu.edu.cn (F. Ma)

paul.chu@cityu.edu.hk (P. K. Chu)

Fig. S1. (Color online) XRD patterns of samples obtained at different temperature and molar ratios (r) between $H_2C_2O_4$ and V_2O_5 for 24 h: (a) r=1, (b) r=2, (c) r=3.

Fig. S2. (Color online) Schematic diagram of phase evolution of VO_2 polymorphs. Blue and red balls represent vanadium and oxygen atoms, respectively.

Fig. S3. (Color online) XRD SEM image of pure VO2 (A).

Supersaturation

Fig. S4. (Color online) The relationship between supersaturation and crystal growth characterization in hydrothermal process.

Fig. S5. The SEM images of samples annealed at 450 °C with (a) r=1, (b) r=2, (c)r=3, respectively.

Fig. S6. (a) The fabricating process of VO_2 film, (b) Photographs of film, (c) the cross-sectional SEM image of the films.