Three new cardiac glycosides from the roots of *Streblus asper* Lour. and their cytotoxic and melanogenesis-inhibitory activities

Dan Miao,<sup>a</sup> Tengqian Zhang,<sup>a</sup> Jian Xu,<sup>a</sup> Congyu Ma,<sup>d</sup> Wenyuan Liu,<sup>d</sup> Takashi Kikuchi,<sup>e</sup>

Toshihiro Akihisa,<sup>f</sup> Masahiko Abe,<sup>f</sup> Feng Feng\*abc and Jie Zhang\*ab

<sup>a</sup> School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing

211198, P. R. China

<sup>b</sup> Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, P. R. China

<sup>c</sup> Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, 223003, China

<sup>d</sup> Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China

<sup>e</sup> Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan

<sup>f</sup> Research Institute for Science and Technology, Tokyo University of Science, 2641

- S1. <sup>1</sup>H-NMR spectrum of compound 1
- S2. <sup>13</sup>C-NMR spectrum of compound 1
- S3. HSQC spectrum of compound 1
- S4. HMBC spectrum of compound 1
- S5. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound 1
- S6. ROESY spectrum of compound 1
- S7. <sup>1</sup>H-NMR spectrum of compound 2
- S8. <sup>13</sup>C-NMR spectrum of compound 2
- S9. HSQC spectrum of compound 2
- S10. HMBC spectrum of compound 2
- S11. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound 2
- S12. ROESY spectrum of compound 2
- S13 <sup>1</sup>H-NMR spectrum of compound 3
- S14. <sup>13</sup>C-NMR spectrum of compound 3
- S15. HSQC spectrum of compound 3
- S16. HMBC spectrum of compound 3

S17. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **3** 

S18. ROESY spectrum of compound 3

S19. List of all compounds

S20. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopic data of compounds **1** and reference ( $\delta$  in ppm, *J* in Hz)

S21. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopic data of compounds **2** and reference ( $\delta$  in ppm, *J* in Hz)

S22. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopic data of compounds **3** and reference ( $\delta$  in ppm, *J* in Hz)



S1. <sup>1</sup>H-NMR spectrum of compound 1



S2. <sup>13</sup>C-NMR spectrum of compound 1





S4. HMBC spectrum of compound 1







S6. ROESY spectrum of compound 1



S7. <sup>1</sup>H-NMR spectrum of compound 2



S8. <sup>13</sup>C-NMR spectrum of compound 2



S10. HMBC spectrum of compound 2



S12. NOESY spectrum of compound 2



S13. <sup>1</sup>H-NMR spectrum of compound  $\mathbf{3}$ 



S14. <sup>13</sup>C-NMR spectrum of compound **3** 



S16. HMBC spectrum of compound 3



S18. ROESY spectrum of compound 3



## S19. List of all compounds

| 7  | Kamaloside                                        | HO<br>H <sub>3</sub> CO<br>OCH <sub>3</sub><br>OH                                                                                                                 |
|----|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Glucokamaloside                                   | $H_{O} \xrightarrow{OH}_{H_{0}} \xrightarrow{O}_{OH} \xrightarrow{H}_{H_{1}} \xrightarrow{O}_{OH} \xrightarrow{O}_{OH} \xrightarrow{O}_{OH} \xrightarrow{O}_{OH}$ |
| 9  | β-sitosterol                                      | HO                                                                                                                                                                |
| 10 | β-sitosterol-3- <i>O</i> -β-D-<br>glucopyranoside | HO OH OH HO OH OH                                                                                                                                                 |

**Reference:** Strophanthidin-**3-***O*-β-Dglucopyranosyl- $(1 \rightarrow 6)$ -O- $\beta$ -D-glucopyranosyl- $(1\rightarrow 4)$ -*O*- $\beta$ -D-diginopyranosyl- $(1\rightarrow 4)$ -*O*- $\beta$ -D-**1**a oleandropyranosyl- $(1 \rightarrow 4)$ -O- $\beta$ -Ddigitoxopyranosyl-(1→4)-β-Ddigitoxopyranoside<sup>b,1</sup> HMBC Position  $\delta_{\mathrm{C}}$  $\delta_{
m H}$  $\delta_{\rm C}$  $\delta_{
m H}$  $(H \rightarrow C)$ 1 19.2 1.89, m 10 18.5 1.89, m 2.68, dd (13.8, 13.8) 2.57, ddd (14.6, 14.6, 3.2) 2 25.4 1.41, m 25.6 1.66. m 2.45, d (13.8) 2.18, dd (14.1, 2.6) 3 73.9 4.44, m 74.9 4.33, br s 4 35.5 1.84, m 5 36.2 1.70, m 2.12, m 2.17, 5 74.1 74.0 6 42.4 1.55, m 4, 5 36.9 1.77, m 2.29, d (12.0) 2.29, m 7 5 23.1 1.37, m 24.8 1.42, m 1.56, d (5.4) 2.45, m 8 40.1 1.41, m 6 41.9 2.28, m 9 40.0 1.77, m 10, 11, 13 39.5 1.75, m 10 56.0 55.3 11 26.4 1.76, m 13 22.6 1.37, m 2.11, m 1.56, m 12 38.2 1.76, m 39.5 1.34, m 2.34, d (16.2) 1.41, m 13 50.4 49.8 14 84.9 84.4 15 32.7 1.84, m 13, 14 32.1 1.83, m 2.05, m 2.06, m 16 27.7 1.99, m 27.2 2.07, m

S20. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopic data of compounds 1 and reference ( $\delta$  in ppm, J in Hz)

| 17  | 51.6 2.79, m             | 8, 13, 14, | 51.1 2.78, br d (8.7)     |
|-----|--------------------------|------------|---------------------------|
|     |                          | 20, 21, 22 |                           |
| 18  | 16.5 1.01, s             | 8, 13, 14  | 16.0 1.00, s              |
|     |                          |            |                           |
| 19  | 209.3 10.41, s           | 1, 10      | 208.5 10.40, s            |
|     | ,                        | ,          | ,                         |
| 20  | 176.3                    |            | 175.7                     |
| 21  | 74.3 5.04, d (18.0)      | 20, 22     | 73.7 5.03, dd (18.0, 1.3) |
|     | 5.30, d (18.0)           |            | 5.29, dd (18.0, 1.3)      |
| 22  | 118.3 6.15, s            | 17, 20, 21 | 117.8 6.13, br s          |
| 23  | 175.0                    |            | 174.5                     |
| 1'  | 99.5 5.39, d (7.8)       | 3          | 100.8                     |
| 2'  | 74.2 3.96, d (7.8)       | 1′         | 72.4                      |
| 3'  | 72.5 4.90, s             | 1′, 4′     | 72.9                      |
| 4'  | 83.2 3.73, d (9.0)       | 5'         | 83.9                      |
| 5'  | 69.5 4.46, m             | 6'         | 69.2                      |
| 6'  | 18.8 1.41, d (5.4)       |            | 18.6                      |
| 1″  | 104.9 5.52, s            | 4', 2", 5" | 104.0                     |
| 2"  | 73.0 4.66, s             | 3″         | 72.4                      |
| 3″  | 74.4 4.29, dd (9.0, 9.0) | 4", 5"     | 72.2                      |
| 4'' | 73.1 4.58, d (9.0)       | 6''        | 73.7                      |
| 5'' | 70.8 4.63, m             |            | 70.3                      |
| 6"  | 18.7 1.48, d (6.0)       | 3"         | 18.4                      |

<sup>a 1</sup>H (600 MHz) and <sup>13</sup>C (150 MHz) NMR spectroscopic data in pyridine- $d_{5.}$ 

<sup>b</sup> <sup>1</sup>H (500 MHz) and <sup>13</sup>C (125 MHz) NMR spectroscopic data in pyridine- $d_{5.}$ 

|          | <b>2</b> <sup>a</sup> |                      |                             | <b>Reference:</b><br>oleandrigenin <sup>b,2</sup> | Reference:<br>acoschimperoside P, 2'-<br>acetate <sup>c,3</sup> |                     |
|----------|-----------------------|----------------------|-----------------------------|---------------------------------------------------|-----------------------------------------------------------------|---------------------|
| Position | $\delta_{ m C}$       | $\delta_{ m H}$      | НМВС                        | $\delta_{ m C}$                                   | $\delta_{ m C}$                                                 | $\delta_{ m H}$     |
|          |                       |                      | (H→C)                       |                                                   |                                                                 |                     |
| 1        | 30.3                  | 1.44, m              |                             | 29.5                                              | 30.8                                                            | 1.53, m             |
|          |                       | 1.51, m              |                             |                                                   |                                                                 | 1.57, m             |
| 2        | 26.7                  | 1.26, m              |                             | 27.8                                              | 26.5                                                            | 1.20, m             |
|          |                       | 1.50, m              |                             |                                                   |                                                                 | 1.56, m             |
| 3        | 73.1                  | 4.06, br s           |                             | 66.6                                              | 73.3                                                            | 4.15, br s          |
| 4        | 29.6                  | 1.26, m              |                             | 33.2                                              | 30.1                                                            | 1.74, m             |
|          |                       | 1.73, m              |                             |                                                   |                                                                 | 1.98, m             |
| 5        | 36.3                  | 1.72, m              |                             | 35.8                                              | 35.6                                                            | 1.51, m             |
| 6        | 26.6                  | 1.25, m              |                             | 26.2                                              | 24.0                                                            | 1.32, m             |
|          |                       | 1.88, m              |                             |                                                   |                                                                 | 1.43, m             |
| 7        | 21.2                  | 1.69, m              |                             | 20.8                                              | 21.4                                                            | 1.30, m             |
|          |                       | 1.74, m              |                             |                                                   |                                                                 | 1.66, m             |
| 8        | 41.9                  | 1.57, m              |                             | 41.7                                              | 42.0                                                            | 1.78, m             |
| 9        | 35.9                  | 1.58, m              |                             | 35.4                                              | 37.1                                                            | 1.81, m             |
| 10       | 35.2                  |                      |                             | 35.2                                              | 35.1                                                            |                     |
| 11       | 20.9                  | 1.20, m              |                             | 21.0                                              | 21.0                                                            | 1.30, m             |
|          |                       | 1.48, m              |                             |                                                   |                                                                 | 1.66, m             |
| 12       | 39.4                  | 1.32, m              |                             | 41.2                                              | 38.7                                                            | 1.32, m             |
|          |                       | 1.54, m              |                             |                                                   |                                                                 | 1.43, m             |
| 13       | 50.1                  |                      |                             | 49.9                                              | 50.4                                                            |                     |
| 14       | 84.4                  |                      |                             | 84.1                                              | 83.2                                                            |                     |
| 15       | 41.3                  | 1.77, dd (15.6, 2.4) | 13                          | 39.2                                              | 41.2                                                            | 2.12, br s          |
|          |                       | 2.73, dd (15.6, 9.6) |                             |                                                   |                                                                 | 2.78, dd (9.7, 5.5) |
| 16       | 74.1                  | 5.47, td (9.2, 2.4)  | 16-OCOCH <sub>3</sub><br>20 | 73.8                                              | 74.8                                                            | 5.68, dd (9.7, 8.9) |
| 17       | 56.2                  | 3.20, m              | 13, 20, 21                  | 56.0                                              | 56.7                                                            | 3.38, d (8.9)       |
| 18       | 16.1                  | 0.93, s              | 12, 13, 14                  | 15.9                                              | 16.3                                                            | 1.07, s             |

S21. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopic data of compounds 2 and reference ( $\delta$  in ppm, J in Hz)

| 19                    | 23.9  | 0.92, s              | 1, 5       | 23.6  | 23.8  | 0.85, s              |
|-----------------------|-------|----------------------|------------|-------|-------|----------------------|
| 20                    | 168.0 |                      |            | 170.1 | 170.5 |                      |
| 21                    | 75.8  | 4.85, dd (18.4, 1.6) | 20         | 75.6  | 76.4  | 5.41, dd (18.1, 1.7) |
|                       |       | 4.97, dd (18.4, 1.6) |            |       |       | 5.54, dd (18.1, 1.7) |
| 22                    | 121.5 | 5.96, s              | 20         | 121.2 | 121.6 | 6.35, s              |
| 23                    | 174.3 |                      | 21         | 173.8 | 174.5 |                      |
| 16-OCOCH <sub>3</sub> | 21.2  | 1.97, s              |            | 21.0  | 21.6  | 2.04, s              |
|                       | 170.6 |                      |            | 167.5 | 170.5 |                      |
| 1'                    | 101.1 | 4.27, d (7.6)        | 3          |       |       |                      |
| 2'                    | 80.5  | 3.19, d (7.6)        | 1', 3'     |       |       |                      |
| 3'                    | 83.2  | 3.13, dd (9.6, 3.2)  | 4'         |       |       |                      |
| 4'                    | 68.7  | 3.80, d (3.2)        |            |       |       |                      |
| 5'                    | 70.0  | 3.50, m              | 1', 4', 6' |       |       |                      |
| 6'                    | 16.6  | 1.33, d (6.8)        | 5'         |       |       |                      |
| 2'-OCH3               | 61.1  | 3.59, s              | 1', 2'     |       |       |                      |
| 3'-OCH <i>3</i>       | 58.0  | 3.50, s              | 3'         |       |       |                      |

<sup>a 1</sup>H (400 MHz) and <sup>13</sup>C (100 MHz) NMR spectroscopic data in chloroform-d.

<sup>b 13</sup>C (100 MHz) NMR spectroscopic data in chloroform-d.

<sup>c</sup><sup>1</sup>H (400 MHz) and <sup>13</sup>C (100 MHz) NMR spectroscopic data in pyridine-*d*<sub>5</sub>.

|          | <b>3</b> <sup>a</sup> |                 |                     | Refere          | ence: reevesioside D <sup>b,4</sup> |
|----------|-----------------------|-----------------|---------------------|-----------------|-------------------------------------|
| Position | $\delta_{ m C}$       | $\delta_{ m H}$ | HMBC                | $\delta_{ m C}$ | $\delta_{ m H}$                     |
|          |                       |                 | $(H \rightarrow C)$ |                 |                                     |
| 1        | 21.4                  | 1.44, m         | 19                  | 21.3            | 1.46, m                             |
|          |                       | 2.39, m         |                     |                 | 2.36, m                             |
| 2        | 25.6                  | 1.57, m         |                     | 25.7            | 1.59, m                             |
|          |                       | 1.93, m         |                     |                 | 1.94, m                             |
| 3        | 73.5                  | 4.25, br s      |                     | 72.2            | 4.25, br s                          |
| 4        | 33.7                  | 1.81, m         |                     | 33.2            | 1.79, m                             |
|          |                       | 2.12, m         |                     |                 | 2.08, m                             |
| 5        | 75.1                  |                 |                     | 74.6            |                                     |
| 6        | 36.5                  | 1.65, m         |                     | 36.5            | 1.72, m                             |
|          |                       | 1.76, m         |                     |                 | 2.07, m                             |
| 7        | 24.1                  | 1.17, m         |                     | 23.9            | 1.25, m                             |
|          |                       | 2.07, m         |                     |                 | 2.09, m                             |
| 8        | 40.9                  | 1.24, m         |                     | 40.7            | 1.52, m                             |
| 9        | 40.1                  | 1.96, m         |                     | 39.4            | 1.92, m                             |
| 10       | 53.4                  |                 |                     | 53.3            |                                     |
| 11       | 21.9                  | 1.86, m         |                     | 21.8            | 1.31, m                             |
|          |                       | 2.25, m         |                     |                 | 1.54, m                             |
| 12       | 39.6                  | 1.34, m         |                     | 40.0            | 1.33, m                             |
|          |                       | 1.56, m         |                     |                 | 1.52, m                             |
| 13       | 49.9                  |                 |                     | 49.8            |                                     |
| 14       | 85.4                  |                 |                     | 85.3            |                                     |
| 15       | 32.5                  | 1.73, m         |                     | 32.3            | 1.68, m                             |
|          |                       | 1.93, m         |                     |                 | 2.01, m                             |
| 16       | 26.9                  | 2.09, m         |                     | 26.8            | 1.85, m                             |
|          |                       | 2.20, m         |                     |                 | 2.01, m                             |
|          |                       | 0.75            | 16                  | 50.4            | $2.75 \pm 11 (0.6 + 5.2)$           |

S22. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopic data of compounds **3** and reference ( $\delta$  in ppm, J in Hz)

17

12, 13, 14, 15.7

0.86, s

18

15.8

0.96, s

| 19      | 176.5 |                     |            | 176.6 |                     |
|---------|-------|---------------------|------------|-------|---------------------|
| 20      | 174.9 |                     |            | 174.7 |                     |
| 21      | 73.7  | 4.81, d (18.0)      |            | 73.6  | 4.79, dd (18.2,1.6) |
|         |       | 4.98, d (18.0)      |            |       | 4.95, dd (18.2,1.6) |
| 22      | 117.8 | 5.88, s             | 17, 21, 23 | 117.6 | 5.88, s             |
| 23      | 174.8 |                     |            | 174.6 |                     |
| 1′      | 100.0 | 4.37, d (7.6)       | 3          |       |                     |
| 2'      | 83.7  | 3.02, dd (8.4, 8.0) | 1', 2'     |       |                     |
| 3'      | 86.4  | 3.12, dd (8.8, 8.8) | 2', 4'     |       |                     |
| 4'      | 74.8  | 3.18, dd (8.4, 8.0) | 3', 5', 6' |       |                     |
| 5'      | 72.0  | 3.33, m             |            |       |                     |
| 6'      | 17.8  | 1.29, d (5.6)       | 4', 5'     |       |                     |
| 2'-OCH3 | 61.1  | 3.63, s             | 2'         |       |                     |
| 3'-OCH3 | 60.9  | 3.57, s             | 3'         |       |                     |

<sup>a 1</sup>H (400 MHz) and <sup>13</sup>C (100 MHz) NMR spectroscopic data in chloroform-*d*.

<sup>b1</sup>H (400 MHz) and <sup>13</sup>C (150 MHz) NMR spectroscopic data in chloroform-d.

Reference:

- 1 S. Kubo, M. Kuroda, Y. Matsuo, D. Masatani, H. Sakagami and Y. Mimakia, *Chemical & Pharmaceutical Bulletin*, 2012, **60**, 1275–1282.
- 2 G. M. Cabrera, M. E. Deluca, A. M. Seldes, E. G. Gros, J. C. Oberti, J. Crockett and M. L. Gross, *Phytochemistry*, 1993, **32**, 1253–1259.
- 3 Y. Rifai, M. A. Arai, T. Koyano, T. Kowithayakorn and M. Ishibashi, *J Nat Med*, 2011, **65**, 629–632.
- 4 H. S. Chang, M. Y. Chiang, H. Y. Hsu, C. W. Yang, C. H. Lin, S. J. Lee and I. S. Chen, *Phytochemistry*, 2013, 87, 86–95.