Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Sustainable rose multiflora derived nitrogen/oxygen-enriched micro-

/mesoporous carbon as low-cost competitive electrode towards high-performance

electrochemical supercapacitors

Qiuli Chen^{a, †}, Jinfeng Sun^{b, †}, Zhengluo Wang^a, Zhiwei Zhao^a, Yanru Zhang^a, Yang

Liu^b, Linrui Hou^b, *, Changzhou Yuan^b, *

^a School of Materials Science & Engineering, Anhui University of Technology, Ma'anshan, 243002, P. R. China

^b School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R.

China

*Corresponding authors

Tel/Fax: +86-531-82769410

Email: mse_houlr@ujn.edu.cn (Prof. L. R. Hou)

mse_yuancz@ujn.edu.cn; ayuancz@163.com (Prof. C. Z. Yuan)

[†] Theses authors contributed equally to this work

Fig. S1. Typical XRD pattern of the NOC-K product

Fig. S2. CP plots of the NOC-K in 6 M KOH aqueous electrolyte

Table S1 Comparisons between the NOC-K electrode and other carbon electrodes in electrochemical performance in various electrolytes and different tesing systems as indicated

Carbons	SC (F g ⁻¹)	Current density	Mass loading	SED (Wh kg ⁻¹)	SPD (W kg ⁻¹)	Ref.
Newspaper-based C	~180 a	2 mV s ^{-1 a}	10 mg ^a	/	/	1
Coconut-shell based C	~228 a	5 mV s ⁻¹ a	\sim 5 mg cm ⁻² a	/	/	2
	~48 b	1 A g ⁻¹ ^b	/	~9.6 ^b	/	2
Prawn shells-based C	~315 a	0.2 A g ⁻¹ a	~3.5 mg ^a	/	/	2
	/	0.05 A g ^{-1 b}	\sim 7.0 mg ^b	~ 7.8 ^b	/	5
Pomelo peel-based C	~342 a	0.1 A g ⁻¹ a	2 mg^a	/	/	Δ
	~68 ^b	0.2 A g ^{-1 b}	4 mg ^b	~9.4 ^b	96 ^b	-
Chestnut shell-based C	~59.6 ^b	0.1 A g ^{-1 b}	4.0 mg ^b	~6.7 ^b	9000 ^b	5
Bamboo-based C	~301 a	0.1 A g ⁻¹ ^a	$2 \text{ mg cm}^{-2 a}$	/	/	6
Cotton-based C	~314 a	0.1 A g ^{-1 a}	10 mg ^a	/	/	7
Lotus seedpod shell- based C	~165 a	0.5 A g ^{-1 a}	8 mg ^{<i>a</i>}	/	/	8
Corn stover-based C	~211.6 <i>a</i>	1 A g ⁻¹ a		/	/	9
- Endothelium corneum Gigeriae galli-based C	~198 a	1 A g ^{-1 a}	/	/	/	10
coffee grounds-based C	~175 a	1 A g ⁻¹ a	$2 \text{ mg cm}^{-2 a}$	/	/	11
Lignin-based C	~286.7 ^b	$0.2 \text{ Ag}^{-1 b}$	/	~8.9 b	51.92 ^b	12
Loofah sponge network-	~304 a	1 A g ^{-1 a}	$\sim 4 \text{ mg}^a$	/	/	
based C	~51.5 ^c	$1 \text{ A g}^{-1 c}$	/	~10 ^c	~500 °	13
•	~298.0 <i>a</i>	$10 \text{ mV s}^{-1 a}$	$\sim 4.5 \text{ mg cm}^{-2 a}$	/		
Biowaste corncob C	~30.0 ^b	1 A g ⁻¹ ^b	~4.5 mg cm ⁻² b	~5.3 ^b	~8276 ^b	14
	/	/	/	$\sim 15^{d}$	$\sim 2827 d$	
-	~236.0 a	1 A g ⁻¹ a	3 mg ^{<i>a</i>}	/	/	
Cashmere-C	~32.0 ^b	1 A g ⁻¹ ^b	6 mg ^b	~3.4 ^b	/	15
	~18.0 ^e	1 A g ⁻¹ ^e	2.4 mg ^e	~17.9 ^e	~125 e	
Nitrogen-rich carbon	~371 a	0.5 A g ⁻¹ ^a	1 mg ^{<i>a</i>}	/	/	
sphere	/	/	2 mg^{b}	~9.97 ^b	~125 b	16
-F	~81 e	0.5 A g ⁻¹ e	/	~50.6 °	~400 e	
	$\sim 306^{a}$	$1 \text{ A g}^{-1} a$	2.4 mg ^{<i>a</i>}	/ 0. 2 h	/ 100 h	17
Shiltake mushroom C	/	/	/	$\sim 8.2^{\circ}$	$\sim 100^{\circ}$	1 /
Carbon nonoshoota	75.9 d	5 A ~-1 d	2.5 mad	~31.7	~0230 *	10
	~23.8 *	<u>3 A g ¹ a</u>	5.5 mg *	~22.4 *	/	10
N-doped graphene-C	~58 °	I A g ⁻¹ e	/	~30.4 °	~1000 °	19
Porous carbon	~54 ^d	1 A g ⁻¹ d	$0.8 \text{ mg cm}^{-2} d$	~20 d	~500 d	20
	~281.6 ^a	$l A g^{-l a}$	5^{a}		/	Our
NOC-K	~36.8°	$1 \text{ A } \text{g}^{-1} ^{v}$	0 / 2 e	$\sim 1.9^{\circ}$	~500 °	work
	~33.1 °	10 A g · ·	0.43	~38.9 °	$\sim 14000^{\circ}$	

Notes: *a* for 6M KOH (3-electrode system); *b* for 6M KOH (2-electrode symmetric cell); *c* for 1 M Et₄NBF₄-PC (2-electrode symmetric cell); *d* for 1 M TEABF₄-AN (2-electrode symmetric cell); *e* for 1M TEABF₄/PC (2-electrode symmetric cell)

References:

[1] D. Kalpana, S. H. Cho, S. B. Lee, Y. S. Lee, R. Misra, N. G. Renganathan, Recycled waste paper-A new source of raw material for electric doublelayercapacitors, *J. Power Sources* 190 (2009) 587-591.

[2] J. Mi, X. R. Wang, R. J. Fan, W. H. Qu, W. C. Li, Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors, *Energy Fuels* 26 (2012) 5321.

[3] F. Gao, J. Y. Qu, Z. B. Zhao, Z. Y. Wang, J. S. Qiu, Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors, *Electrochim*. *Acta* 190 (2016) 1134.

[4] Q. H. Liang, L. Ye, Z. H. Huang, Q. Xu, Y. Bai, F. Y. Kang, Q. H. Yang, A honeycomb-like porous carbon derived frompomelo peel for use in high-performancesupercapacitors, *Nanoscale* 6 (2014) 13831.

[5] M. Jiang, J.Q. Zhang, L. B. Xing, J. Zhou, H. Y. Cui, W. J. Si, S. P. Zhuo, KOHactivated porous carbons derived from chestnut shell with superior capacitive performance, *Chin. J. Chem.* 34 (2016) 1093.

[6] W. Q. Tian, Q. M. Gao, Y. L. Tian, K. Yang, L. H. Zhu, C. X. Yang, Z. Hang, Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial byproductas a high performance supercapacitor electrode material, *J Mater*. *Chem.* A 3 (2015) 5656.

[7] K. Song, W. L. Song, L. Z. Fan, Scalable fabrication of exceptional 3D carbon networks for supercapacitors, *J. Mater. Chem. A* 3 (2015) 16104.

[8] X. Wang, M. J. Wang, X. M. Zhang, H. J. Li, X. H. Guo, Low-cost, green synthesis of highly porous carbons derived from lotus root shell as superior performance electrode materials in supercapacitor, *J. Energy Chem.* 25 (2016) 26.

[9] H. Jin, X. M. Wang, Y. B. Shen, Z. R. Gu, A high-performance carbon derived

from corn stover via microwaveand slow pyrolysis for supercapacitors, *J. Anal. Appl. Pyrolysis* 110 (2014) 18.

[10] X. T. Hong, K. S. Hui, Z. Zeng, K. N. Hui, L. J. Zhang, M. Y. Mo, M. Li, Hierarchical nitrogen-doped porous carbon with high surface areaderived from endothelium corneum gigeriae galli for high-performance supercapacitor, *Electrochim. Acta* 130 (2014) 464.

[11] C. H. Wang, W. C. Wen, H. C. Hsu, B. Y Yao, High-capacitance KOH-activated nitrogen-containing porous carbonmaterial from waste coffee grounds in supercapacitor, *Adv. Powder Technol.* 27 (2016) 1387.

[12] W. L. Zhang, M. Z. Zhao, R. Y. Liu, X. F. Wang, H. B. Lin, Hierarchical porous carbon derived from lignin for high performancesupercapacitor, *Colloid Surfaces A* 484 (2015) 518.

[13] Y. T. Luan, L. Wang, S. Guo, B. J. Jiang, D. D. Zhao, H. J. Yan, C. G. Tian, H.G. Fu, A hierarchical porous carbon material from a loofahsponge network for high performancesupercapacitors, *RSC Adv.* 5 (2015) 42430.

[14] W. H. Qu, Y. Y. Xu, A. H. Lu, X. Q. Zhang, W. C. Li, Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes, *Bioresour. Technol.* 287 (2005) 428.

[15] L. Zhou, H. Cao, S. Q. Zhu, L. R. Hou, C. Z. Yuan, Hierarchical micro-/mesoporous N-and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors, *Green Chem.* 17 (2015) 2373.

[16] F. Sun, H. B. Wu, X. Liu, F. Liu, H. H. Zhou, J. H. Gao, Y. F. Lu, Nitrogen-rich carbon sphere made by a continuous spraying process for high-performance supercapcitors, *Nano Res.* 9 (2016) 3209.

[17] P. Cheng, S.Y. Gao, P.Y. Zang, X.F. Yang, Y.L. Bai, H. Xu, Z.H. Liu, Z.B Lei., Hierarchically porous carbon by activation of shiitake mushroom for capative energy storage, Carbon 93 (2015) 315.

[18] G. P. Hao, A. H. Lu, W. Dong, Z. Y. Jin, X. Q. Zhang, J. T. Zhang, W. C. Li, Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance, *Adv. Energy Mater.* 3 (2013) 1421.

[19] S. M. Li, S. Y. Yang, Y. S. Wang, H. P. Tsai, H. W.Tien, S. T. Hsiao, W. H. Liao, C. L. Chang, C. C. M. Ma, C. C. Hu, N-doped structure and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte, *J. Power Sources* 278 (2015) 218.

[20] E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Béguin, Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content, *Electochim. Acta* 51 (2006) 2209.

Table S2

The parameter value of fitting EIS

Samples	R _s (Ohm)	R _{ct} (Ohm)
NOC	~0.6	~6.4
NOC-K	~0.4	~1.6

Fig. S4. Cycling performance of the NOC-K based symmetric device with 1 M $TEABF_4/PC$ organic electrolyte in the voltage range from 0.0 to 3.0 V

Fig. S5. Cycling performance of the NOC-K based symmetric device with 1 M $TEABF_4/PC$ organic electrolyte in the voltage range from 0.0 to 2.5 V