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A Experimental method

The Taylor dispersion technique was used for measurements of binary and ternary diffusion coefficients. In
its mathematical model, it is assumed that a homogeneous liquid mixture flows through a long, isothermal
and straight tube of length L with a uniform, circular cross-section of radius R0, having impermeable walls.
The mixture is flowing in a slow, laminar manner with the mean velocity u. An injected narrow concentra-
tion pulse is dispersed due to the combined influence of the axial convection and molecular diffusion in radial
direction. Further assumptions imply that diffusion coefficients are constant, which is valid if the concentra-
tion gradient is small, and no volume change occurs upon mixing. To satisfy the theoretical assumptions,
Taylor dispersion experiments were carried out in capillaries with a small diameter. A Teflon (PTFE) tube of
length L=(29.839±0.001) m with a circular cross-section radius R0=374 µm was used. The capillary was coiled
around a grooved aluminum cylinder with a diameter of 30 cm and was placed in a temperature-regulated air
bath. A HPLC analytical pump (Knauer S1000) with active pulsation damping was used to push the carrier
solution through the dispersion tube. The utilized Knauer Smartline RI Detector 2300 (λ=950 nm) is suited
for recording small concentration variations with its differential sensitive refractometer. To prevent bubbles
from disturbing the flow, the SYSTEC degassing module was installed and connected in-line before the pump.
The flow rate during the measurements was 0.08 mL/min. Zero dead volume fittings were used to connect the
capillary with the six port injection valve with injection volume ∆V=20 µL. The RI detector and the dispersion
tube were kept in the same air bath at a constant temperature of 298±0.2 K. The detector was connected to a
computer for digital data acquisition using the Clarity Software by DataApex.
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The diffusion equation for each component can then be written in the form1,2
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where t is the time; r and z are the radial and axial coordinates, respectively.
In order to obtain an analytical solution of equation (1), an additional assumption is introduced: the axial

transport by diffusion is small ∂ 2C j/∂ z2� ∂ 2C j/∂ r2 + r−1∂C j/∂ r , and can be neglected. Under these assump-
tions, the solution for the radially averaged concentrations of the injected samples can be found in an analytical
form2.

For a practical implementation, the concentration in the solution of equation (1) is replaced with the output
signal V (t) of a differential refractive index detector. Concentration differences ∆Ci between the injected sample
and the carrier solution must be sufficiently small to ensure that the changes of the detector signal V (t) are
proportional to the changes of the concentration across the dispersion profiles

V (t) =
k=K

∑
k=0

Vktk +R1[C1(t)−C10]+R2[C2(t)−C20] , (2)

where Ci0 are the concentrations in the carrier solution, Vk are adjustable parameters of a baseline and R1 =

(∂V/∂C1)C2 and R2 = (∂V/∂C2)C1 is the so-called "detector sensitivity".
Following Leaist3, the analytical solution of equation (1) for a ternary mixture can be written as

V (t) =
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where η = 12(t− tR)2/R2
0t , tR = L/u is the retention time and D̂i are the eigenvalues of the matrix of diffusion

coefficients

D̂1,2 =
1
2

(
D11 +D22±

√
(D11−D22)2 +4D12D21

)
. (4)

The normalized weight W1 is defined as
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√
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, (5)

where the parameters a, b and α are

a =
D11− D̂1−D12 SR

D̂2− D̂1
, (6)

b =
D22−D11−D21/SR +D12 SR

D̂2− D̂1
, (7)

α =
∆C1

∆C1 +∆C2/SR
. (8)

Therein, SR = R1/R2 is the optical sensitivity coefficient, which can be determined either by measuring the
refractive indices of mixtures or by the relative ratio of the peak areas4,5. The basic tests and validation of the
experimental set-up with binary and ternary mixtures were presented previously4,6.
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Fig. 1: Experimental Taylor dispersion peaks (symbols) for two different injections and fitting curves for the
ternary mixture benzene + acetone + methanol with a composition (0.33, 0.57, 0.10) mol mol−1.

The diffusion coefficients are obtained from the parameters of equation (3) that fit the experimental peaks.
Instead of directly fitting D11, D12, D21 and D22, we have used the parameters a, b and two eigenvalues. In order
to determine four diffusion coefficients, two or more dispersion profiles have to be fitted simultaneously. A fit
example of two peaks is shown in Figure 1 for the mixture benzene + acetone + methanol with a composition
(0.33, 0.57, 0.10) mol mol−1.

The diffusion coefficient matrix obtained experimentally from the Taylor dispersion technique provides co-
efficients in the volume reference frame, which have to be be transformed into the molar reference frame for
comparison with molecular simulation data.

A.1 Fick diffusive flux equations in different reference frames

Molar fluxes in the volume reference frame (uv = ∑φiui) are

Jv
1 = x1ρ(u1−uv) =−Dv

11∇C1−Dv
12∇C2 ,

Jv
2 = x2ρ(u2−uv) =−Dv

21∇C1−Dv
22∇C2 ,

(9)

and in the molar reference frame (u = ∑xiui) they are

J1 = x1ρ(u1−u) =−ρD11∇x1−ρD12∇x2 ,

J2 = x2ρ(u2−u) =−ρD21∇x1−ρD22∇x2 ,
(10)

with molar density ρ.
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Transformation of Fick coefficients between volume and molar reference frames7

Dv = BVu×D×BuV ,

BVu
ik = δik− xi(vk− vn)/v ,

BuV
ik = δik− xi(1− vk/vn) with [BVu]−1 = [BuV ] .

(11)

The transformation of the experimental data from the volume to the molar reference frame (Dv
i j to Di j) was

done on the basis of pure component volumes. Carrying out dedicated density measurements, it was found that
that the differences between partial molar volumes, which have to be used for a strict transformation, and pure
component volumes are negligible.

B Computational details and model parameters

B.1 Simulation details

All molecular dynamics (MD) simulations were carried out with the program ms28–10. A cubic volume was
assumed with periodic boundary conditions containing 4000 molecules. Intermolecular interactions were ex-
plicitly evaluated within a cutoff radius of 17.5 Å, considering the LJ long-range corrections beyond the cutoff
radius with the angle-averaging method of Lustig11 and the long-range electrostatic interactions by means of
the reaction field method12.

The simulations were conducted in the canonic (NV T ) ensemble, while the temperature was controlled
by velocity scaling13. The simulations were first equilibrated over 4× 105 time steps followed by production
runs of 4 to 5 ×107 time steps. Newton’s equations of motion were solved with a fifth-order Gear predictor-
corrector numerical integrator and an integration time step of ∼ 1.02 fs. The phenomenological diffusion
coefficients were calculated by averaging up to 4.9×105 independent time origins of the correlation functions
with a sampling length of 20.5 ps for the individual correlation functions.

B.2 Flux equations

Molar fluxes according to irreversible thermodynamics in the mass reference frame (um = ∑wiui)

Jm
1 /ρ = x1(u1−um) =− 1
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RT
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RT
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1
RT
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RT
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(12)

In equilibrium MD simulation, the mass averaged velocity um is typically set to zero when the net momentum is
set to zero.

Coefficients obtained by MD simulation with the Green-Kubo formalism14 are

Λi j =
1

3N

∫
∞

0

〈 Ni

∑
k=1

vk
i (0) ·

N j

∑
l=1

vl
j(t)
〉

dt , (13)
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where N is the total number of molecules. The coefficients are constrained by Λi j = Λ ji and ∑MiΛi j = 0.

Because there are only two independent fluxes and driving forces in a ternary mixture, the equations can be
transformed to the following form in the molar reference frame

J1/ρ =−∆11
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RT
∇µ1−∆12

x2

RT
∇µ2 ,
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RT
∇µ2 .

(14)

Transformation of the phenomenological coefficients is
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(15)

Transformation to the Fick diffusion coefficients in the molar reference frame is

D = ∆∆∆×ΓΓΓ . (16)

Thermodynamic factor matrix for the transformation between different driving forces is15
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(18)
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Table 1: Wilson gE model parameters.

component vi comp. 1 comp. 2 ∆λi j/R ∆λ ji/R
cm3 mol −1 K K

acetone 73.876 benzene acetone -45.574 198.045
benzene 89.711 benzene methanol 85.839 1030.889

methanol 40.749 acetone methanol -72.439 309.734
ethanol 58.372 benzene ethanol 72.021 871.861

2-propanol 77.034 acetone ethanol 12.531 196.077
benzene 2-propanol 147.759 488.692
acetone 2-propanol 131.842 116.611

B.3 Wilson excess Gibbs energy model

The elements of the thermodynamic factor matrix can be calculated by the Wilson excess Gibbs energy (gE)
model from15

Γi j = δi j + xi(Qi j−Qin) ,

Qi j =−
Ai j

Si
−

A ji

S j
+

n

∑
k=1

xkAki

Sk
,

Si =
n

∑
j=1

x jAi j , Ai j =
v j

vi
exp
(
−

∆λi j

RT

)
,

(19)

with the molar volumes of the pure components vi and the binary Wilson parameters λi j listed in Table 1.

B.4 Molecular force fields

Molecular force field model parameters from previous work: benzene16, acetone17, methanol18, ethanol19.
New force field parameters for 2-propanol20. All parameters listed in Table 2.

S 6



Table 2: Lennard-Jones parameters (σ and ε) and electrostatic parameters (quadrupole Q, dipole D or point
charge q) as well as spatial site positions of the molecular force field models used in this work.

site x y z M σ ε/kB Q D q
Å Å Å a.u. Å K DÅ D e

benzene
CH 0 0 0 13.0 3.446 70.019 -1.0435 - -
CH -1.6303 0 0 13.0 3.446 70.019 -1.0435 - -
CH -2.4455 1.4119 0 13.0 3.446 70.019 -1.0435 - -
CH -1.6303 2.8238 0 13.0 3.446 70.019 -1.0435 - -
CH 0 2.8238 0 13.0 3.446 70.019 -1.0435 - -
CH 0.8152 1.4119 0 13.0 3.446 70.019 -1.0435 - -
acetone
C 0 0 0 12.0 2.9307 9.8216 - 3.4448 -
O 0 1.2095 0 16.0 3.3704 106.9873 - - -
CH3 0 -0.8031 1.2853 15.0 3.6225 111.9795 - - -
CH3 0 -0.8031 -1.2853 15.0 3.6225 111.9795 - - -

0 -0.8031 0 - - - -0.8031 - -
methanol
CH3 0.7660 0.0134 0 15.034 3.7543 120.592 - - 0.24746
O -0.6565 -0.0640 0 16.0 3.0300 87.879 - - -0.67874
H -1.0050 0.8146 0 1.008 - - - - 0.43128
ethanol
CH3 -1.471 -0.338 0 15 3.6072 120.15 - - -
CH2 0.093 0.883 0 14 3.4612 86.291 - - 0.25560
O 1.172 -0.451 0 16 3.1496 85.053 - - -0.69711
H 2.049 -0.086 0 1 - - - - 0.44151
2-propanol
CH3 -1.1090 2.1279 -1.2649 15.0355 3.8656 103.590 - - -
CH3 -3.0811 1.1352 0.0766 15.0355 3.8656 103.590 - - -
CH -1.5519 1.3442 0 13.0195 3.2383 20.200 - - 0.30974
O -0.9689 0 0 15.9995 3.1538 85.904 - - -0.74720
H 0 0 0 1.008 - - - - 0.43746
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