Self-assembly of amphiphilic truncated cones to form hollow nanovesicles

Yali Wang ${ }^{1}$ and Xuehao $\mathrm{He}^{1,2,33^{*}}$
${ }^{1}$ Department of Chemistry, School of science, Tianjin University, Tianjin 300350, China
${ }^{2}$ National Demonstration Center for Experimental Chemistry \& Chemical engineering Education, Tianjin University, Tianjin 300350, China
${ }^{3}$ National Virtual Simulation Experimental Teaching Center for Chemistry \& Chemical engineering Education, Tianjin University, Tianjin 300350, China

Table S1. The number of A and B beads of each kind of particles and the annealing temperature
range of each system with corresponding particle shape in this work.
$\left.\begin{array}{lcccccccc}\hline \hline \text { shape } & \theta\left({ }^{\circ}\right) & h_{c} & A_{x} B_{y} & \begin{array}{c}\text { Annealing } \\ \text { temperare } \\ \text { range }\end{array} & \text { shape } & \theta\left({ }^{\circ}\right) & h_{c} & B_{x} A_{y} B_{z}\end{array} \begin{array}{c}\text { Annealing } \\ \text { temperature } \\ \text { range }\end{array}\right]$

This journal is © The Royal Society of Chemistry 2018

Fig. S1 The calculation of potential energy of two interacting $A_{x} B_{y}$ particles at $\theta=30^{\circ}$ and $h_{c}=0.2$. The orientation angles in (a) and (b) are (99, 0,44) and ($23,76,90$), respectively.

Fig. S2 The energy E, specific capacity heat $C v$ and cluster growth kinetics of $A_{x} B_{y}$ and $B_{x} A_{y} B_{z}$ type particles at $\theta=30^{\circ}$ and $h_{c}=0.0,0.5$. The snapshots of self-assembled intermediate configurations at several typical temperatures (indicated by red points on energy evolution curves) are also shown. The specific capacity heat $C v$ reflects the system energy fluctuation in the self-assembly process. The dash lines on cluster growth kinetics correspond to those red temperature points on energy evolution curves. The final assembled structures mainly include two complete clusters, and the black, red and green curves correspond to the growth of the first, second and third cluster, respectively.

Fig. S3 Energy evolution and growth kinetics of the self-assembly of $A_{x} B_{y}$ type particles at $\theta=25^{\circ}$ and 35°. Except for $h_{c}=0.5$, the energy evolutions of $A_{x} B_{y}$ type particles at $h_{c}=0.0,0.2,0.4$ are like ladders. The clusters are formed gradually with one-by-one way. At $\theta=35^{\circ}$ and $h_{c}=0.5$, clusters are likely to generated together, and the cluster size fluctuates rather noticeably in the assembly. The black, red, green and blue curves in (e-h) and (m-p) correspond to the growth of the first, second, third and fourth cluster, respectively.

Fig. S4 Energy evolution and growth kinetics of clusters of $B_{x} A_{y} B_{z}$ type particles at $\theta=25^{\circ}$ and 35°. Energy decreases quickly with increasing h_{c}. At $h_{c}=0.5$, several clusters begin to form simultaneously. In the case of $h_{c}=0.2,0.4$, clusters are formed one after another. The sharp cluster size change is due to the merger of the partial structures and complete cluster. The black, red and green curves correspond to the first, second and third cluster, respectively.

Fig. S5 The potential energy surface (PES) of two interacting $A_{x} B_{y}$ and $B_{x} A_{y} B_{z}$ type particles. The left column is for $A_{x} B_{y}$ particles at $\theta=30^{\circ}$ and $h_{c}=0.2,0.4,0.5,0.6$. The right column is for $B_{x} A_{y} B_{z}$ particles at $\theta=30^{\circ}$ and $h_{c}=0.2,0.4,0.5,0.6$. The unit of three orientation angle is $\pi / 99$. The displayed color legend is also applied in all PESs. Pink and black points represent minimum and maximum energies on PES, respectively, and their corresponding configurations are shown.

Fig. S6 The potential energy surface (PES) of two interacting $A_{x} B_{y}$ and $B_{x} A_{y} B_{z}$ type particles. The left column is for $A_{x} B_{y}$ particles at $\theta=35^{\circ}$ and $h_{c}=0.2,0.4,0.5,0.6$. The right column is for $B_{x} A_{y} B_{z}$ particles at $\theta=35^{\circ}$ and $h_{c}=0.2,0.4,0.6,0.7$. The unit of three orientation angle is $\pi / 99$. The displayed color legend is also applied in all PESs. Pink and black points represent minimum and maximum energies on PES, respectively, and their corresponding configurations are shown.

