Supporting Information

Poly(N,N-Dimethylacrylamide - OctadecylAcrylate) - ClayHydrogels with High Mechanical Properties and Shape MemoryAbility

Feng Wang^{a,c}, Xueyong Yong^{a,b,c}, Jianping Deng^{b,c}, and Youping Wu^{a,c,*}

^aState Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

^bState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^cCollege of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Figure S1. Typical photographs of (a) clay dissolved in deionized water at room temperature; (b) gelatin emulsified octadecyl acrylate in clay solution; (c) after DMA addition in mixed solution; (d) hydrogels

Figure S2. X-ray diffraction patterns of clay and three hydrogels.

Figure S3. Shore hardness of the hydrogels with different clay contents.

Figure S4. The shape of hydrogels after 30 days in pH = 7.4 PBS, 37 °C. (After immersing for 5 days, NC–0 hydrogel became a turbid solution.)

Figure S5. Degradation ratio of hydrogels. (Degradation ratio = $(W_o - W_d)/W_o$, W_o and W_d were the dry hydrogel weights before and after degradation, respectively.)

Figure S6. DSC curves of dried hydrogels.

Figure S7. (a) permanent rod shape, (b) temporary spiral shape of Ref-1 hydrogel.