Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting information:

In-situ Synthesis of MoS₂/graphene Nanosheets as Free-standing and Flexible Electrode Paper for High-Efficiency Hydrogen Evolution Reaction

Xianghui Zhang ^{1*}, Mingguang Zhang ¹, Yiqun Tian ¹, Jing You ¹, Congxing Yang ², Jun Su ², Yuebin Li ¹, Yihua Gao², and Haoshuang Gu ^{1*}

- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Sciences, Hubei University, Wuhan, 430062, P.R. China.
- Center for Nanoscale Characterization and Devices, School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P.R. China.

Email : xhzhang@hubu.edu.cn, guhsh@hubu.edu.cn

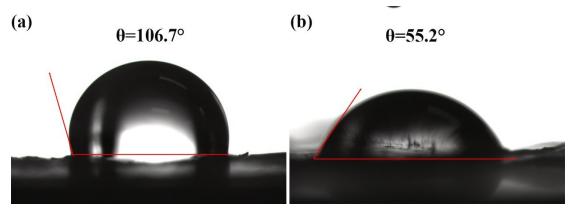


Figure S1 Contact angle measurement of MoS₂/graphene hybrid film (a) before and (b) after heat-treated at 700 °C for 2 hours in Ar flow.

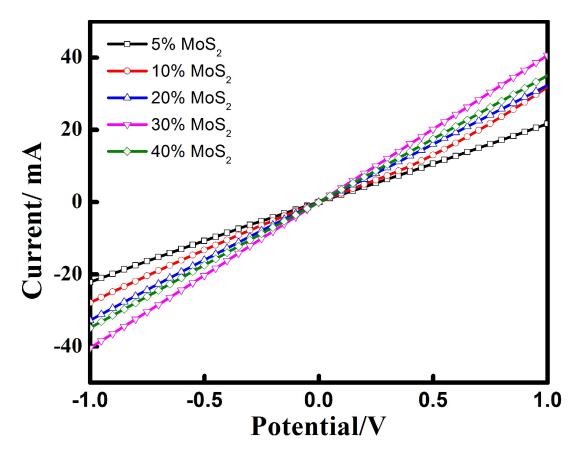


Figure S2. The I-V curve measurement of the MoS_2 /graphene hybrid thin films with various loading rate from 5% to 40%.

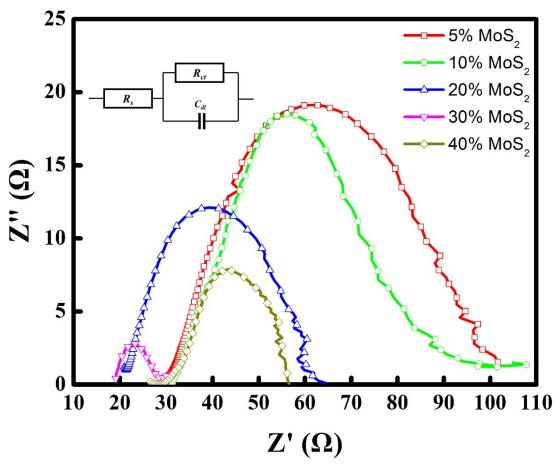


Figure S3. The Nyquist plots of MoS_2 /graphene hybrid thin films with various loading rate collected from 10^5 to 0.1 Hz with an amplitude of 10 mV at the open-circuit voltage.

Catalyst	Onset overpotentials (mV vs RHE)	Tafel slopes (mV/dec)	Exchange current density (µA/cm²)	η(mV) @j=10 mA/cm ²
5% MoS ₂	263.7	156.7	10.3	490.2
10% MoS ₂	261.3	156.1	18.6	430.3
20% MoS ₂	212.1	142.6	33.7	355.5
30% MoS ₂	94.2	140.1	168.4	238.5
40% MoS ₂	221.6	147.8	27.5	377.2
Pt-C	23.9	33.9	51.6	91.2

Table 1. Comparison of catalytic parameters of various loading rate MoS_2 catalysts and commercial Pt-C catalyst.

Table 2. Electrochemical Impedance Spectroscopy (EIS) parameters of different loading rate MoS_2 catalysts

Catalyst	Double-layer capacitance (µF)	Charge-transfer Resistance (R _{ct} /Ω)	Series Resistance (R _s /Ω)
5% MoS ₂	379.8	83.5	6.2
10% MoS ₂	216.7	36.6	31.6
20% MoS ₂	108.5	35.5	26.5
$30\% \text{ MoS}_2$	92.2	3.8	36.6
40% MoS ₂	85.6	14.5	30.6