Supporting Information

Water-soluble and fluorescence adjustable copolymers containing a hydrochromic dye: synthesis, characterization and properties

Le Ju^{a,b}, Tianyou Qin^a, Ting Zhang^c, Peng Wang^a, Lan Sheng^{*a} and Sean Xiao-An Zhang^{b,c}

^aCollege of Chemistry, Jilin University, Changchun, 130012, China.

E-mail: shenglan17@jlu.edu.cn; Fax: +86-431-85153812

^bDepartment of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, 519041, China.

^cState Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.

Table of Contents

1. NMR and IR spectra of AM-Rh and poly(AM-Rh_x co NIPAM_y)s (Figugre S1 – S4)

2. Test and calculation of molar absorption coefficient of AM-Rh (Figure S5)

3. GPC raw date (Figure S6)

4. The contrast between halochromism of AM-Rh and hydrochromism (Figure S7, S8)

5. The solubility of P0 in binary solvents of DMF-H₂O (Figure S9, S10)

6. Halochromism of P1/100 and hydrochromic of AM-Rh in binary solvents of DMF-H₂O (Figure

S11, S12)

7. Halochromism and florescence of AM-Rh in DMF (Figure S13)

8. Hydrochromism and florescence of NH₂-Rh in binary solvents of DMF-H₂O (Figure S14)

9. Florescence of AM-Rh in binary solvents of DMF-H₂O (Figure S15)

10. Florescence of AM-Rh vary with temperature (Figure S16)

1. NMR and IR spectra of AM-Rh and poly(AM-Rh_x co NIPAM_y)s

P0 AM-Rh poly(AM-Rh_x co NIPAM_y) P0 & AM-Rh 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm⁻¹)

Figure S2. Infrared spectrum of P0, AM-Rh, P1/50 and mixture of P0 & AM-Rh.

Figure S3. ¹H NMR spectrums of P1/50, P1/100, P1/200, P1/345, P0.

Figure S4 Schematic diagram for calculating values of x, y, and x / y.

2. Test and calculation of molar absorption coefficient of AM-Rh

Figure S5. a) The UV-Vis spectra of AM-Rh in methol with concentration ranging from 1×10^{-6} mol L⁻¹ to 2×10^{-5} mol L⁻¹. b) Absorbance values plotted against concentration in MeOH, molar absorption coeffcient (ϵ) of AM-Rh was calculated as 111850 L mol⁻¹ cm⁻¹.

3. GPC raw date

Figure S6. The raw GPC data of polymer.

4. The contrast between halochromism of AM-Rh and hydrochromism

Figure S7. The UV-Vis spectra of AM-Rh (C = 1×10^{-5} mol L⁻¹) in DMF with gradually adding CF₃COOH.

Figure S8. Normolized UV-Vis spectra of the solution of P1/100 (0.2 mg / mL) in water and in DMF with addition of CF₃COOH.

5. The solubility of P0 in DMF-H₂O mixed systems

Figure S9. The UV-Vis spectra of the solution of **P0** (0.2 mg / mL) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C.

Figure S10. Photographs of **P0** (0.2 mg / mL) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C.

6. Halochromism of P1/100 and hydrochromic of AM-Rh in mixtures of DMF-H₂O

Figure S11. The UV-Vis spectra of P1/100 (0.2 mg / ml) in DMF with adding CF₃COOH.

Figure S12. a) UV-Vis spectra of the solution of AM-Rh ($C = 1 \times 10^{-5} \text{ mol } L^{-1}$) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90%. b) The corresponding photographs of AM-Rh in different water contents.

7. Halochromism and florescence of AM-Rh in DMF with adding CF₃COOH

Figure S13. a) The UV-Vis spectra of AM-Rh (C = 1×10^{-5} mol L⁻¹) in DMF before (gray) and after (magenta) adding CF₃COOH. b) Fluorescence of AM-Rh (C = 1×10^{-5} mol L⁻¹) in DMF before (gray) and after (orange) adding CF₃COOH ($\lambda_{ex} = 530$ nm; slit width: 3, 1.5).

8. Hydrochromic and florescence of NH2-Rh in mixtures of DMF-H2O

Figure S14. a) UV-vis spectra of the solution of NH₂-Rh (C = 1×10^{-5} mol L⁻¹) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90%. b) The fluorescence spectra of the solution of NH₂-Rh in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C (C = 1×10^{-5} mol L⁻¹, $\lambda_{ex} = 530$ nm; slit width: 3, 1.5).

9. Florescence of AM-Rh in mixtures of DMF-H₂O

Figure S15. a) The fluorescence spectra of the solution of AM-Rh in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C (C = 1×10^{-5} mol L⁻¹, $\lambda_{ex} = 530$ nm; slit width: 3, 1.5). b) The corresponding fluorescence photographs of AM-Rh in different water contents.

10. Florescence of AM-Rh vary with temperature

Figure S16. a) The fluorescence spectra of the solution of AM-Rh (C = 1×10^{-5} mol L⁻¹) in H₂O with varying temperature from 15 to 55 °C ($\lambda_{ex} = 530$ nm; slit width: 3, 1.5). b) Fluorescence changes of AM-Rh (C = 1×10^{-5} mol L⁻¹) in H₂O with varying temperature from 15 to 55 °C.