## Supporting Information

Table S1 Thermal parameters of PLLA/PBAT-based blends during the first and second DSC heating cycles

Table S2 Solubility of supercritical carbon dioxide in PLLA, PBAT and their blends

Figure S1 Frequency dependence of loss modulus $G^{\prime \prime}$ of PLLA, PLLA/PBAT and PLLA/PBAT/PDLA at $190^{\circ} \mathrm{C}$

Figure S2 Cross-over points for curves of $\mathrm{G}^{\prime}$ and $\mathrm{G}^{\prime \prime}$ as a function of frequency for PLLA/PBAT 9/1 systems with different PDLA

Figure S3 Cross-over points for curves of $\mathrm{G}^{\prime}$ and $\mathrm{G}^{\prime \prime}$ as a function of frequency for PLLA/PBAT
$8 / 2$ systems with different PDLA

Table S1Thermal parameters of PLLA/PBAT-based blends during the first and second DSC heating cycles

| Sample name | $\mathrm{T}_{\mathrm{cc}}$ | $\mathrm{T}_{\mathrm{ex}}$ | $\mathrm{T}_{\mathrm{m}}$ | $\Delta \mathrm{H}_{\mathrm{c}}$ | $\Delta \mathrm{H}_{\mathrm{m}}$ | Xc | $\mathrm{T}_{\mathrm{scm}}$ | $\Delta \mathrm{H}_{\mathrm{sc}-\mathrm{m}}$ |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The first heating |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PLLA/PBAT 9/1 | 92.8 | 157.7 | 174.3 | 33.44 | 41.11 | $9.17 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 8/2 | 92.9 | 158.5 | 174.9 | 27.66 | 36.48 | $11.86 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 7/3 | 89.3 | 158.6 | 175.7 | 19.66 | 27.90 | $12.68 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 5/5 | - | 156.4 | 174.7 | 0 | 16.49 | $35.47 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 9/1+5\% PDLA | 90.4 | 158.6 | 176.3 | 20.88 | 25.85 |  | 222.8 | 7.43 |  |  |  |  |  |  |
| PLLA/PBAT 9/1+10\% PDLA | 90.6 | 158.4 | 175.6 | 18.89 | 25.44 |  | 233.1 | 8.27 |  |  |  |  |  |  |
| PLLA/PBAT 8/2+5\% PDLA | 90.8 | 158.4 | 176.2 | 19.6 | 24.6 |  | 229.21 | 8.93 |  |  |  |  |  |  |
| PLLA/PBAT 8/2+10\% PDLA | 91 | 158.8 | 176 | 18.02 | 23.92 |  | 230.1 | 9.75 |  |  |  |  |  |  |
|  | The second heating |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PLLA/PBAT 9/1 | 95.4 | 158.2 | 174.1 | 15.04 | 40.50 | $30.41 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 8/2 | 95.1 | 159 | 174.4 | 8.95 | 32.63 | $31.83 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 7/3 | 94.1 | 159.2 | 175.1 | 5.4 | 27.08 | $33.30 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 5/5 | 97.6 | 158.6 | 174.5 | 3.74 | 17.67 | $29.96 \%$ |  |  |  |  |  |  |  |  |
| PLLA/PBAT 9/1+5\% PDLA | 95.4 | 157.8 | 174.1 | 27.84 | 28.36 |  |  |  |  |  |  |  |  |  |
| PLLA/PBAT 9/1+10\% PDLA | 94.9 | 157.4 | 173.5 | 25.75 | 26.63 |  |  |  |  |  |  |  |  |  |
| PLLA/PBAT 8/2+5\% PDLA | 95.3 | 157.9 | 174 | 25.41 | 26.45 |  |  |  |  |  |  |  |  |  |
| PLLA/PBAT 8/2+10\% PDLA | 94.9 | 157.6 | 173.8 | 24.27 | 25.4 |  |  |  |  |  |  |  |  |  |

Table S2 Solubility of supercritical carbon dioxide in PLLA, PBAT and their blends

| Samples | PLLA | PLLA/PBAT <br> $9 / 1$ | PLLA/PBAT <br> $8 / 2$ | PLLA/PBAT <br> $7 / 3$ | PLLA/PBAT <br> $5 / 5$ | PBAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\mathrm{a}}$ Gas solubility <br> $(\mathrm{g} \mathrm{CO} / 100 \mathrm{~g}$ polymer) | 22.60 | 21.24 | 19.87 | 18.51 | 15.78 | 8.95 |
| ${ }^{\mathrm{b}}$ Gas solubility <br> $(\mathrm{g} \mathrm{CO} / 100 \mathrm{~g}$ polymer $)$ | ---- | 21.09 | 18.90 | 18.40 | 16.5 | ----- |

Note: ${ }^{\text {a }}$ means the gas solubility determined by the experiments, while ${ }^{\mathrm{b}}$ means the calculated gas solubility considering the weight percentage according to this equation:
Solubility of binary blends=Solubility of CO 2 in pure PLLA $\times$ Weight percent of PLLA+ Solubility of CO 2 in pure $\mathrm{PBAT} \times(1-$ Weight percent of PLLA)


Figure S1 Frequency dependences of loss modulus $G^{\prime \prime}$ of PLLA, PLLA/PBAT and PLLA/PBAT/PDLA at $190^{\circ} \mathrm{C}$


Figure S2 Cross-over points for curves of $\mathrm{G}^{\prime}$ and $\mathrm{G}^{\prime \prime}$ as a function of frequency for PLLA/PBAT 9/1 systems with different PDLA


Figure S3 Cross-over points for curves of $\mathrm{G}^{\prime}$ and $\mathrm{G}^{\prime \prime}$ as a function of frequency for PLLA/PBAT $8 / 2$ systems with different PDLA

