Supplementary Information

Core@Shell Structured Co-CoO@NC Nanoparticles Supported on Nitrogen Doped Carbon with High Catalytic Activity for Oxygen

Reduction Reaction

Zihao Zhen,^a Zhongqing Jiang,^{b,c} Xiaoning Tian,^c Lingshan Zhou,^a Binglu Deng,^a Bohong Chen ^a and Zhong-Jie Jiang ^{*a}

^{a.} Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, P. R. China. E-mail: Zhongjiejiang1978@hotmail.com or eszjiang@scut.edu.cn.

^{b.} Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

^{c.} School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, P. R. China.

Content

1.	Element mapping	3			
2.	TGA curve	3			
3.	TEM images	4			
4.	XPS survey spectra	5			
5.	XRD patterns	5			
6.	Raman spectra	6			
7.	LSVs and K-L plots	6			
8.	Elemental composition	7			
9.	Performance comparison	8			
Ref	References 8				

1. Element mapping

Figure S1. The SEM image and corresponding elemental mapping images of Co-CoO@NC/NC-800.

2. TGA curve

Figure S2. TGA curve of the Co-CoO@NC/NC-800.

The weight loss below 200 °C could be attributed to the vaporization of physically adsorbed water, which accounts for 10.3 wt.% of the Co-CoO@NC/NC-800. The weight loss

at the temperature higher than 200°C could be attributed to the decomposition of the Co-CoO@NC/NC-800 with association of the transformation of Co and CoO to Co₃O₄. Assuming that the atomic ratio of $Co^{(0)}$: $Co^{(II)}=3:2$ (estimated from the XPS result), the weight percentage of Co-CoO in the Co-CoO@NC/NC-800 could be calculated as follows:

wt. % of
$$Co - CoO = 35.8\% / \left(0.6 \times \frac{MW_{Co_3O_4}}{MW_{CoO}} + 0.4 \times \frac{MW_{Co_3O_4}}{MW_{CoO}} \right) = 28.7\%$$

3. TEM images

Figure S3. TEM images of (a) the Co-CoO@C/C-800, (b) the Co-CoO@NC/NC-700, (c) the

Co-CoO@NC/NC-900, (d) the Co-CoO@NC/NC-800 synthesized without the drying at 200°C.

4. XPS survey spectra

Figure S4. XPS survey spectra of the Co-CoO@C/C-800, the Co-CoO@NC/NC-700, the Co-CoO@NC/NC-900.

5. XRD patterns

Figure S5. XRD patterns of the Co-CoO@C/C-800, the Co-CoO@NC/NC-700, the Co-CoO@NC/NC-900.

6. Raman spectra

Figure S6. Raman spectra of the Co-CoO@C/C-800, the Co-CoO@NC/NC-700, the Co-CoO@NC/NC-900.

7. LSVs and K-L plots

Figure S7. LSVs and K-L plots for the ORR by (a, b) the NC, (c, d) the Co-CoO@C/C-800, (e, f) the Co-CoO@NC/NC-700, (g, h) the Co-CoO@NC/NC-900 in an O₂-saturated 0.1 M KOH solution at various rotation rates at a scan rate of 5 mV/s.

8. Elemental composition

Table S1. Relative atomic percentages of the elements in the Co-CoO@NC/NC-800, the NC,the Co-CoO@C/C-800, the Co-CoO@NC/NC-700, and the Co-CoO@NC/NC-900.

Samples	Co	С	Ν	0
Co-CoO@NC/NC-800	1.7	82.6	10.2	5.5
NC	0	82.4	11.9	5.7
Co-CoO@C/C-800	1.1	87.6	3.8	7.5
Co-CoO@NC/NC-700	3.32	71.52	13.75	11.41
Co-CoO@NC/NC-900	2.12	85.02	5.63	7.24

9. Performance comparison

Table S2. Comparison of the ORR onset potential of the Co-CoO@NC/NC-800 with those of

the catalysts reported.

Catalyst	Mass	Onset	Half-wave	Reference
•	Loading	potential	potential	
	$/ \text{mg cm}^{-2}$	/ V vs. RHE ^a	/ V vs. RHE	
Co-CoO@NC/NC-800	0.102	0.961	0.868	This work
N-C@Co-2	0.213	0.895		1
Co-N-GN	0.1	0.864	0.800	2
g-VB12	0.6	0.925	0.833	3
Co/NrGO	0.2	0.902		4
Co-NCA5	0.2	0.842	0.802	5
Co-N-GC-800	0.2	0.900	0.810	6
Co-NMCV	0.153	0.832	0.783	7
Co-C@NWCs	0.1	0.939	0.83	8
Co ₃ O ₄ -SP/NGr-24h	1	0.896	0.756	9
Co/N-C-800	0.25	0.834		10
CNCNT	0.1	0.900		11
Co@CoO@N-C/C	0.42	0.92	0.81	12
Co/CoO@Co-N-C-	0.2	0.913	0.793	13
800				
MOFs-800	0.335	0.90	0.80	14
Fe ₃ C@NG800	0.2	0.98	0.87	15
G-Co/CoO	0.1	0.882	0.786	16
NCA CZ FeCo	0.21	0.95	0.888	17
N-CoO	0.07	0.773	0.653	18
HP-Co-NCNFs	0.306	0.907		19
CoFe ₂ O ₄ /NG	0.283	0.932	0.818	20
Co(OH)x-NCNT	0.1	0.87		21
Co _{0.5} Fe _{0.5} S@N-MC	0.8	0.913	0.808	22
CoO/NCW	0.244	0.85	0.78	23
BNC/Co ₂ P-2	0.213	0.893	0.813	24
CoO/MC-1.5	0.510	0.882		25
Co-S/G-3	0.08	0.89	0.82	26

^a The ORR onset potential is defined at which the current density reaches to 0.1 mA cm⁻².

References

- C. Han, X. Bo, Y. Zhang, M. Li, A. Nsabimana and L. Guo, *Nanoscale*, 2015, 7, 5607-5611.
- 2. S. Jiang, C. Zhu and S. Dong, J. Mater. Chem. A, 2013, 1, 3593-3599.

- 3. Y. Jiang, Y. Lu, X. Wang, Y. Bao, W. Chen and L. Niu, *Nanoscale*, 2014, 6, 15066-15072.
- 4. T. Kottakkat and M. Bron, *ChemElectroChem*, 2014, 1, 2163-2171.
- K. Kreek, A. Sarapuu, L. Samolberg, U. Joost, V. Mikli, M. Koel and K. Tammeveski, *ChemElectroChem*, 2015, 2, 2079-2088.
- C. Li, Z. Han, Y. Yu, Y. Zhang, B. Dong, A. Kong and Y. Shan, *RSC Adv.*, 2016, 6, 15167-15174.
- M. Li, X. Bo, Y. Zhang, C. Han, A. Nsabimana and L. Guo, J. Mater. Chem. A, 2014, 2, 11672-11682.
- 8. Y. Li, F. Cheng, J. Zhang, Z. Chen, Q. Xu and S. Guo, Small, 2016, 12, 2839-2845.
- 9. S. K. Singh, V. M. Dhavale and S. Kurungot, *ACS Appl. Mater. Interfaces*, 2015, 7, 21138-21149.
- J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grutzke, P. Weide, M. Muhler and W. Schuhmann, *Angew. Chem. Int. Ed.*, 2014, 53, 8508-8512.
- Z. Wang, S. Xiao, Z. Zhu, X. Long, X. Zheng, X. Lu and S. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 4048-4055.
- Z. Wu, J. Wang, L. Han, R. Lin, H. Liu, H. L. Xin and D. Wang, *Nanoscale*, 2016, 8, 4681-4687.
- X. Zhang, R. Liu, Y. Zang, G. Liu, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Chem. Commun.*, 2016, **52**, 5946-5949.
- H. Zhong, Y. Luo, S. He, P. Tang, D. Li, N. Alonso-Vante and Y. Feng, ACS Appl. Mater. Interfaces, 2017, 9, 2541-2549.
- H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang and C. Li, ACS Appl. Mater. Interfaces, 2015, 7 21511–21520.
- 16. S. Guo, S. Zhang, L. Wu and S. Sun, Angew. Chem. Int. Ed., 2012, 51, 11770-11773.
- K. Elumeeva, J. Ren, M. Antonietti and T.-P. Fellinger, *ChemElectroChem*, 2015, 2, 584-591.

- 18. H. Yu, Y. Li, X. Li, L. Fan and S. Yang, Chem. Eur. J., 2014, 20, 3457-3462.
- 19. S. Wang, Z. Cui and M. Cao, Chem. Eur. J., 2015, 21, 2165-2172.
- L. Lu, Q. Hao, W. Lei, X. Xia, P. Liu, D. Sun, X. Wang and X. Yang, Small, 2015, 11, 5833-5843.
- 21. J. E. Kim, J. Lim, G. Y. Lee, S. H. Choi, U. N. Maiti, W. J. Lee, H. J. Lee and S. O. Kim, *ACS Appl. Mater. Interfaces*, 2016, **8**, 1571-1577.
- 22. M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai and L. Lu, *ACS Appl. Mater. Interfaces*, 2015, 7, 1207-1218.
- 23. J. Xu, Q. Yu, C. Wu and L. Guan, J. Mater. Chem. A, 2015, 3, 21647-21654.
- C. Han, X. Bo, Y. Zhang, M. Li, A. Wang and L. Guo, *Chem. Commun.*, 2015, **51**, 15015-15018.
- P. Li, R. Ma, Y. Zhou, Y. Chen, Q. Liu, G. Peng and J. Wang, *RSC Adv.*, 2016, 6, 70763-70769.
- T. Odedairo, X. Yan, J. Ma, Y. Jiao, X. Yao, A. Du and Z. Zhu, *ACS Appl. Mater. Interfaces*, 2015, 7, 21373-21380.