Supporting Information

Synthesis of MnS/Ni_xS_y Composite with Nanoparticles coated on Hexagon Sheets Structures as An Advanced Electrode Material for Asymmetric Supercapacitors

Qing Pan^{a,1}, Xijia Yang^{b,1}, Xiaohong Yang^a, Lianfeng Duan^b, Lijun Zhao^{a,*}

^a Key Laboratory of Automobile Materials (Jilin University), Ministry of Education,

College of Materials Science and Engineering, Nanling Campus, Changchun, 130025,

P. R. China.

^bKey Laboratory of Advanced Structural Materials, Ministry of Education, and Depar tment of Materials Science and Engineering, Changchun University of Technology,

Changchun 130012, China

*E-mail address: lijunzhao@jlu.edu.cn

Fax: +86-431-85095876

Supporting Figures

Fig. S1 FE-SEM images of (a) MS; (b) NS; (c) NMS-1 (1:2) and (d) NMS-2 (1:1).

Fig. S2 EDX spectrum of the NMS.

Fig. S3 (a) XRD patterns of the as-prepared NS, MS, NMS, NMS-1 and NMS-2 electrode; (b) XRD patterns of the as-prepared Ni-Mn precursor and NMS samples with different sulfurization time (2, 4 and 6 h).

Fig. S4 (a) CV curves at various scan rates; (b) galvanostatic charge-discharge curves at different current density of AC.