Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Heronamides G-L, polyene macrolactams from *Streptomyces niveus* isolated from Great Khingan Mountains soil

Nan Ding,^a Li Han,^{*,a} Yi Jiang,^b Guiding Li,^b Zehui Zheng,^a Bixuan Cao,^a Peipei Guan,^a Yu Mu,^a Bin Lin^c and Xueshi Huang^{*,a}

^aInstitute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China

^bYunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China

^cSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

*Corresponding authors

Tel: 86-24-83656106. Fax: 86-24-83656106. E-mail: huangxs@mail.neu.edu.cn (X. Huang);

Tel: 86-24-83656122. Fax: 86-24-83656122. E-mail: hanli@mail.neu.edu.cn (L. Han).

Table of Contents

Computational details for ECD calculations	5
Figure S1. HRESIMS spectrum of compound 1	
Figure S2. IR spectrum of compound 1	
Figure S3. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 1	
Figure S4. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 1	
Figure S5. HSQC spectrum of compound 1	
Figure S6. HMBC spectrum of compound 1	
Figure S7. COSY spectrum of compound 1	
Figure S8. NOESY spectrum of compound 1	
Figure S9. HRESIMS spectrum of compound 2	
Figure S10. IR spectrum of compound 2	
Figure S11. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 2	
Figure S12. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 2	
Figure S13. HSQC spectrum of compound 2	
Figure S14. HMBC spectrum of compound 2	
Figure S15. COSY spectrum of compound 2	
Figure S16. NOESY spectrum of compound 2	
Figure S17. HRESIMS spectrum of compound 3	
Figure S18. IR spectrum of compound 3	
Figure S19. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3	
Figure S20. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3	
Figure S21. HSQC spectrum of compound 3	
Figure S22. HMBC spectrum of compound 3	
Figure S23. COSY spectrum of compound 3	
Figure S24. NOESY spectrum of compound 3	

Figure S25. HRESIMS spectrum of compound 4	
Figure S26. IR spectrum of compound 4	
Figure S27. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 4	
Figure S28. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 4	
Figure S29. HSQC spectrum of compound 4	
Figure S30. HMBC spectrum of compound 4	
Figure S31. COSY spectrum of compound 4	
Figure S32. NOESY spectrum of compound 4	
Figure S33. HRESIMS spectrum of compound 5	
Figure S34. IR spectrum of compound 5	
Figure S35. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 5	
Figure S36. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 5	
Figure S37. HSQC spectrum of compound 5	
Figure S38. HMBC spectrum of compound 5	
Figure S39. COSY spectrum of compound 5	
Figure S40. NOESY spectrum of compound 5	
Figure S41. HRESIMS spectrum of compound 6	
Figure S42. IR spectrum of compound 6	
Figure S43. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 6	
Figure S44. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 6	
Figure S45. HSQC spectrum of compound 6	
Figure S46. HMBC spectrum of compound 6	
Figure S47. COSY spectrum of compound 6	
Figure S48. NOESY spectrum of compound 6	
Figure S49. HRESIMS spectrum of compound 10	
Figure S50. IR spectrum of compound 10	

Figure S51. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 10	69
Figure S52. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 10	70
Figure S53. HSQC spectrum of compound 10	71
Figure S54. HMBC spectrum of compound 10	72
Figure S55. COSY spectrum of compound 10	73

Computational details for ECD calculations

Compound 1

The number of imaginary frequencies: 0

Energy: E(RB3LYP) = -1251.08406970

Cartesian Coordinates:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Z
1	6	0	-0.106996	0.713665	0.520618
2	6	0	-1.220481	1.049386	-0.147503
3	6	0	-2.636605	1.067005	0.368061
4	6	0	-3.412805	2.270850	-0.109359
5	6	0	-4.665882	2.240487	-0.554684
6	6	0	-5.482442	0.984804	-0.632552
7	1	0	-6.485067	1.180535	-0.230601
8	8	0	-5.613435	0.611056	-2.013869
9	6	0	-4.859636	-0.153488	0.187998
10	1	0	-5.044848	0.056675	1.247510
11	8	0	-5.574796	-1.348197	-0.171857
12	6	0	-3.359316	-0.276261	-0.065723
13	6	0	-2.666079	-1.446384	0.608412
14	6	0	-3.037759	-1.792767	2.025800
15	6	0	-1.569883	-1.911228	-0.016574
16	6	0	-0.432530	-2.614448	0.563280

17	6	0	0.833860	-2.263969	0.284860
18	6	0	1.124694	0.347190	-0.282538
19	1	0	1.067950	0.874850	-1.238376
20	6	0	2.512833	0.655794	0.308632
21	1	0	2.534286	0.534261	1.396057
22	7	0	3.391251	-0.324163	-0.333170
23	6	0	4.767779	0.159231	-0.549112
24	1	0	4.957993	0.146254	-1.627116
25	6	0	5.817954	-0.712179	0.144647
26	6	0	7.249468	-0.248654	-0.129998
27	6	0	4.691876	1.611690	-0.024445
28	6	0	3.196852	1.980412	-0.037501
29	1	0	2.892075	2.294417	-1.042376
30	8	0	2.828691	2.975023	0.913052
31	6	0	2.749320	-1.297699	-1.008513
32	8	0	3.273605	-2.134958	-1.740905
33	1	0	-1.143883	1.149504	-1.229363
34	1	0	-2.627588	1.100791	1.461541
35	1	0	-2.888735	3.221292	-0.065343
36	1	0	-5.147886	3.155021	-0.884460
37	1	0	-5.977975	-0.286999	-2.007390
38	1	0	-4.956222	-2.088624	-0.204324
39	1	0	-2.399905	-2.575887	2.432797
40	1	0	-2.956530	-0.922938	2.686134
41	1	0	-4.073738	-2.136414	2.096146
42	1	0	-1.402769	-1.539691	-1.022679

43	1	0	-0.598703	-3.373312	1.321298
44	1	0	1.632654	-2.774325	0.814189
45	1	0	5.620533	-0.710205	1.221551
46	1	0	5.692706	-1.741485	-0.200116
47	1	0	7.427787	0.760851	0.247995
48	1	0	7.969266	-0.913512	0.351502
49	1	0	7.463906	-0.246560	-1.202318
50	1	0	5.043773	1.655540	1.010187
51	1	0	5.295418	2.299232	-0.616466
52	1	0	3.169550	3.827635	0.617509
53	6	0	-0.021557	0.579805	2.017300
54	1	0	0.680144	1.316029	2.420489
55	1	0	-0.977970	0.740481	2.510243
56	1	0	0.350390	-0.405416	2.309212
57	6	0	1.251860	-1.185882	-0.696855
58	1	0	0.705462	-1.328664	-1.631099
59	1	0	-3.220499	-0.367741	-1.147017

The number of imaginary frequencies: 0 Energy: E(RB3LYP) = -1327.55896690 Cartesian Coordinates:

Center	Atomic	Atomic	Coordinates	(Angstroms))
Number	Number	Type	Х	Y	Ζ

1	6	0	-0.922069	2.098643	-0.195998
2	6	0	0.400829	2.242867	0.511088
3	6	0	1.615384	2.043183	-0.013935
4	6	0	2.837302	2.093445	0.772676
5	6	0	4.048371	1.643986	0.410286
6	6	0	4.419108	1.058083	-0.918009
7	1	0	3.561319	1.042574	-1.595692
8	8	0	5.475526	1.848922	-1.518737
9	6	0	5.001266	-0.363587	-0.894702
10	1	0	5.415163	-0.522201	-1.897830
11	8	0	6.055172	-0.509191	0.061183
12	6	0	4.001429	-1.517844	-0.694760
13	6	0	3.167079	-1.544085	0.575169
14	6	0	3.890065	-1.773925	1.872703
15	6	0	1.834616	-1.386001	0.460337
16	6	0	0.865743	-1.371941	1.543749
17	6	0	-0.421875	-0.999241	1.472067
18	6	0	-1.176163	-0.482443	0.280593
19	1	0	-0.550733	-0.527959	-0.612531
20	6	0	-1.744356	0.959971	0.475194
21	1	0	-1.760003	1.169395	1.548195
22	6	0	-3.213163	0.884129	-0.004961
23	1	0	-3.370176	1.476429	-0.912002
24	7	0	-3.463529	-0.528604	-0.266413
25	6	0	-4.888689	-0.896152	-0.143273

26	1	0	-4.950537	-1.714299	0.580016
27	6	0	-5.494297	-1.366274	-1.468150
28	6	0	-6.951069	-1.811984	-1.332541
29	6	0	-5.520163	0.397678	0.429952
30	6	0	-4.341610	1.229422	0.970286
31	1	0	-4.065837	0.891598	1.975818
32	8	0	-4.562675	2.636048	0.974956
33	6	0	-2.419611	-1.344247	-0.004478
34	8	0	-2.462582	-2.571047	0.011066
35	1	0	0.331736	2.483646	1.570787
36	1	0	1.702163	1.779937	-1.061415
37	1	0	2.731854	2.492907	1.778702
38	1	0	4.864273	1.714337	1.121868
39	1	0	5.252225	2.781050	-1.404121
40	1	0	6.790109	0.048289	-0.223142
41	1	0	3.315591	-1.474785	-1.542893
42	1	0	4.544200	-2.646425	1.800649
43	1	0	4.529368	-0.920915	2.113349
44	1	0	3.210495	-1.935922	2.706646
45	1	0	1.441960	-1.227621	-0.539317
46	1	0	1.220987	-1.673858	2.523104
47	1	0	-1.004353	-1.043017	2.389157
48	1	0	-5.414736	-0.556044	-2.200282
49	1	0	-4.890809	-2.195987	-1.845693
50	1	0	-7.595247	-0.995187	-0.998337
51	1	0	-7.337157	-2.165958	-2.290499

52	1	0	-7.047260	-2.629263	-0.612393
53	1	0	-6.002457	0.968746	-0.368285
54	1	0	-6.268198	0.188275	1.194221
55	1	0	-5.188830	2.850339	1.676648
56	8	0	4.726946	-2.751014	-0.853041
57	1	0	5.571831	-2.643935	-0.393627
58	6	0	-0.798574	1.971754	-1.717804
59	1	0	-0.264120	2.831837	-2.125706
60	1	0	-0.256236	1.074134	-2.021405
61	1	0	-1.778429	1.941658	-2.195890
62	1	0	-1.489875	3.016087	0.010443

The number of imaginary frequencies: 0 Energy: E(RB3LYP) = -1402.79456774 Cartesian Coordinates:

Center	Atomic	Atomic	Coord	linates (Angsti	roms)
Number	Number	Туре	Х	Y	Z
1	8	0	3.512190	2.584729	-0.626720
2	6	0	3.099572	1.585913	-0.022238
3	7	0	3.764313	0.398109	-0.058849
4	6	0	3.210848	-0.911594	0.399363
5	6	0	4.310576	-1.915129	0.004292

6	1	0	3.871566	-2.876944	-0.269128
7	8	0	5.157748	-2.084951	1.149705
8	6	0	5.027434	-1.251950	-1.173370
9	6	0	4.989424	0.255807	-0.878771
10	1	0	4.846167	0.826946	-1.798206
11	6	0	6.228800	0.811789	-0.159759
12	6	0	7.454966	0.900127	-1.070093
13	1	0	3.135559	-0.916147	1.485845
14	6	0	1.868989	-1.179765	-0.231639
15	6	0	0.730067	-1.528633	0.394180
16	6	0	0.655608	-1.915491	1.848563
17	6	0	-0.525999	-1.382806	-0.348085
18	6	0	-1.748837	-1.310035	0.191939
19	6	0	-2.972720	-0.942118	-0.592688
20	1	0	-2.698355	-0.988639	-1.647205
21	6	0	-3.642587	0.492832	-0.409971
22	6	0	-5.152525	0.203824	-0.227923
23	1	0	-5.406930	0.133365	0.831752
24	8	0	-6.004260	1.155500	-0.864540
25	6	0	-5.379690	-1.169855	-0.857560
26	1	0	-6.299966	-1.640535	-0.493400
27	8	0	-5.403566	-1.087887	-2.281281
28	6	0	-4.136603	-1.948556	-0.427284
29	1	0	-3.980249	-2.832549	-1.051975
30	8	0	-4.242766	-2.326395	0.949052
31	1	0	-3.549182	0.987570	-1.379363

32	6	0	-3.099259	1.545985	0.601908
33	8	0	-4.019837	2.667208	0.391732
34	6	0	-3.174261	1.135461	2.071174
35	6	0	-1.731428	2.011682	0.164949
36	6	0	-0.590948	1.916444	0.857174
37	6	0	0.713909	2.162857	0.271245
38	6	0	1.832164	1.604315	0.754058
39	1	0	5.867019	-2.695767	0.914066
40	1	0	6.039455	-1.636904	-1.300713
41	1	0	4.476801	-1.470607	-2.091414
42	1	0	5.982283	1.810011	0.209049
43	1	0	6.446353	0.190154	0.711905
44	1	0	8.306803	1.319452	-0.530325
45	1	0	7.757014	-0.079974	-1.447634
46	1	0	7.259780	1.542620	-1.933413
47	1	0	1.809891	-0.925415	-1.286934
48	1	0	0.120031	-1.163473	2.435606
49	1	0	0.105243	-2.853197	1.961700
50	1	0	1.637134	-2.056652	2.295638
51	1	0	-0.417064	-1.182822	-1.412213
52	1	0	-1.880688	-1.496653	1.249989
53	1	0	-5.685460	2.027609	-0.586779
54	1	0	-5.838444	-0.251160	-2.502154
55	1	0	-4.950483	-2.977106	1.032883
56	1	0	-3.756786	3.392606	0.972809
57	1	0	-2.543878	0.275788	2.289706

58	1	0	-2.849340	1.960721	2.708882
59	1	0	-4.198370	0.886816	2.344959
60	1	0	-1.702989	2.403025	-0.849628
61	1	0	-0.595721	1.497147	1.857963
62	1	0	0.751271	2.687916	-0.679283
63	1	0	1.790252	1.023770	1.668598

The number of imaginary frequencies: 0 Energy: E(RB3LYP) = -1402.79168094 Cartesian Coordinates:

Center Atomic Atomic Co				Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
 1	8	0	2.757187	2.370666	0.583223	
2	6	0	2.313473	1.430899	-0.079576	
3	6	0	1.036092	1.555635	-0.850509	
4	6	0	0.044054	2.339534	-0.413641	
5	6	0	-1.273727	2.564155	-1.124288	
6	1	0	-1.118196	2.367388	-2.197299	
7	8	0	-1.711559	3.918010	-0.949130	
8	6	0	-2.372307	1.615708	-0.666594	
9	1	0	-2.580059	0.830361	-1.390570	
10	6	0	-3.063921	1.604779	0.484515	

11	6	0	-2.853224	2.589719	1.609351
12	6	0	-4.133087	0.550958	0.741019
13	1	0	-4.704949	0.871417	1.620492
14	6	0	-3.656400	-0.924298	1.098360
15	6	0	-4.986317	-1.683532	0.936736
16	1	0	-5.666032	-1.382545	1.752563
17	8	0	-4.804660	-3.087096	0.935952
18	6	0	-5.565699	-1.139213	-0.377945
19	1	0	-5.028857	-1.624124	-1.203578
20	8	0	-6.937476	-1.423946	-0.557669
21	6	0	-5.223232	0.376136	-0.361256
22	1	0	-4.871756	0.712813	-1.342182
23	8	0	-6.428981	1.074558	-0.022632
24	1	0	-3.315068	-0.940053	2.139214
25	6	0	-2.553800	-1.447130	0.224770
26	6	0	-1.264593	-1.455542	0.599779
27	6	0	-0.111182	-1.649780	-0.281923
28	6	0	-0.361648	-2.086645	-1.705581
29	6	0	1.101923	-1.292862	0.191456
30	6	0	2.370355	-1.053281	-0.589059
31	1	0	2.178789	-1.047256	-1.666030
32	7	0	2.982256	0.232813	-0.165847
33	6	0	4.245487	0.057620	0.580285
34	1	0	4.168420	0.616737	1.518040
35	6	0	5.445564	0.618986	-0.219455
36	6	0	6.738635	0.553641	0.544537

37	6	0	7.833848	-0.106658	0.154740
38	6	0	9.132769	-0.158248	0.908088
39	6	0	4.294617	-1.460135	0.829881
40	6	0	3.495560	-2.078067	-0.325283
41	1	0	3.071834	-3.057727	-0.065843
42	8	0	4.252416	-2.171906	-1.534280
43	1	0	0.935389	0.995136	-1.778618
44	1	0	0.169502	2.860226	0.534778
45	1	0	-0.962087	4.489944	-1.184070
46	1	0	-2.145361	3.375622	1.346835
47	1	0	-3.802295	3.069065	1.885593
48	1	0	-2.495330	2.070755	2.510164
49	1	0	-5.668802	-3.470219	0.710267
50	1	0	-7.406129	-0.606929	-0.304868
51	1	0	-6.362010	1.984413	-0.346505
52	1	0	-2.816406	-1.739631	-0.789383
53	1	0	-1.024300	-1.154929	1.620365
54	1	0	-0.930153	-3.024167	-1.722432
55	1	0	-0.959031	-1.343541	-2.250642
56	1	0	0.562529	-2.253906	-2.262825
57	1	0	1.168403	-1.002325	1.239917
58	1	0	5.527045	0.075861	-1.166930
59	1	0	5.206277	1.665177	-0.450630
60	1	0	6.765360	1.099895	1.490705
61	1	0	7.809003	-0.644770	-0.795589
62	1	0	9.074525	0.400083	1.848685

63	1	0	9.419091	-1.192320	1.144599
64	1	0	9.954670	0.264761	0.314344
65	1	0	5.320798	-1.839463	0.880653
66	1	0	3.805624	-1.707726	1.779909
67	1	0	5.028909	-2.724300	-1.352346

The number of imaginary frequencies: 0

Energy: E(RB3LYP) = -1327.56401830

Cartesian Coordinates:

Center	Atomic	Atomic	Coordi	nates (Angstro	oms)
Number	Number	Туре	Х	Y	Z
1	8	0	3.262301	-2.736857	-1.120339
2	6	0	3.636616	-1.612343	-0.771582
3	6	0	2.670889	-0.427633	-0.802734
4	1	0	2.666380	-0.096625	-1.848279
5	6	0	1.275316	-0.828596	-0.413353
6	6	0	0.185276	-0.277557	-0.948309
7	6	0	-1.189632	-0.332445	-0.362594
8	1	0	-1.217515	-1.137745	0.378032
9	6	0	-1.624923	0.968955	0.431000
10	6	0	-3.157665	0.787381	0.566834
11	6	0	-3.669174	0.238758	1.924772

12	1	0	-4.017525	1.043764	2.577191
13	8	0	-2.636488	-0.506927	2.580111
14	6	0	-4.823045	-0.692129	1.541018
15	1	0	-5.047952	-1.414117	2.333754
16	8	0	-5.974577	0.104677	1.264454
17	6	0	-4.306380	-1.374554	0.271304
18	1	0	-3.590775	-2.144490	0.572408
19	8	0	-5.420358	-1.981514	-0.388176
20	1	0	-3.659434	1.739736	0.402963
21	6	0	-3.612776	-0.244451	-0.516475
22	1	0	-4.351870	0.190127	-1.190761
23	6	0	-2.358414	-0.599187	-1.343564
24	6	0	-2.333642	-2.002249	-1.944941
25	8	0	-2.355862	0.369061	-2.418877
26	1	0	-1.160767	0.894192	1.414795
27	6	0	-1.260547	2.313160	-0.166829
28	6	0	-0.042835	2.887088	-0.181970
29	6	0	0.194171	4.219228	-0.846059
30	6	0	1.105447	2.134897	0.339653
31	6	0	2.298448	1.985817	-0.246685
32	6	0	3.172470	0.804721	0.058835
33	1	0	3.048253	0.535349	1.111627
34	6	0	4.653758	1.042004	-0.241205
35	6	0	5.526756	-0.160974	0.117955
36	1	0	6.487823	-0.051437	-0.394659
37	6	0	5.817276	-0.266178	1.625627

38	6	0	6.756369	-1.412674	2.003760
39	7	0	4.916692	-1.391386	-0.405970
40	1	0	1.181438	-1.460527	0.467058
41	1	0	0.317615	0.380440	-1.803827
42	1	0	-2.956128	-0.762980	3.453641
43	1	0	-6.519539	-0.393014	0.638584
44	1	0	-5.130661	-2.379137	-1.216997
45	1	0	-2.354164	-2.778342	-1.177716
46	1	0	-3.179340	-2.146637	-2.621492
47	1	0	-1.418802	-2.146683	-2.525675
48	1	0	-1.582120	0.210626	-2.973870
49	1	0	-2.070665	2.856140	-0.645622
50	1	0	0.636523	4.933822	-0.145513
51	1	0	0.891022	4.128928	-1.685091
52	1	0	-0.736949	4.640783	-1.227303
53	1	0	0.889611	1.483733	1.181615
54	1	0	2.552245	2.560715	-1.135058
55	1	0	4.768335	1.268308	-1.306187
56	1	0	5.015196	1.912867	0.309323
57	1	0	6.265402	0.682691	1.935793
58	1	0	4.875210	-0.365415	2.172761
59	1	0	6.979905	-1.389857	3.072244
60	1	0	6.316977	-2.389072	1.786235
61	1	0	7.705099	-1.341377	1.464052
62	1	0	5.497646	-2.218795	-0.436366

Figure S1. HRESIMS spectrum of compound 1

 \cap

23

Figure S8. NOESY spectrum of compound 1

Figure S9. HRESIMS spectrum of compound 2

Figure S10. IR spectrum of compound 2

Figure S11. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **2**

Figure S13. HSQC spectrum of compound 2

Figure S14. HMBC spectrum of compound 2

Figure S15. COSY spectrum of compound 2

Figure S16. NOESY spectrum of compound 2

Figure S17. HRESIMS spectrum of compound 3

Figure S18. IR spectrum of compound 3

Figure S19. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **3**

Figure S21. HSQC spectrum of compound 3

Figure S22. HMBC spectrum of compound **3**

Figure S23. COSY spectrum of compound **3**

Figure S24. NOESY spectrum of compound **3**

Figure S25. HRESIMS spectrum of compound 4

Figure S26. IR spectrum of compound 4

Figure S27. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **4**

Figure S29. HSQC spectrum of compound 4

Figure S30. HMBC spectrum of compound **4**

Figure S31. COSY spectrum of compound 4

Figure S32. NOESY spectrum of compound 4

Figure S33. HRESIMS spectrum of compound 5

Figure S34. IR spectrum of compound **5**

Figure S35. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **5**

Figure S37. HSQC spectrum of compound 5

Figure S38. HMBC spectrum of compound **5**

Figure S40. NOESY spectrum of compound **5**

Figure S41. HRESIMS spectrum of compound 6

Figure S42. IR spectrum of compound **6**

Figure S43. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **6**

Figure S44. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of compound **6**

Figure S45. HSQC spectrum of compound 6

Figure S46. HMBC spectrum of compound **6**

Figure S47. COSY spectrum of compound 6

Figure S48. NOESY spectrum of compound 6

Figure S49. HRESIMS spectrum of compound **10**

Figure S50. IR spectrum of compound 10

Figure S51. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **10**

Figure S53. HSQC spectrum of compound 10

Figure S54. HMBC spectrum of compound 10

Figure S55. COSY spectrum of compound 10