Supporting Information

Efficient Solar-Driven Conversion of Nitrogen to Ammonia in Pure Water via

Hydrogenated Bismuth Oxybromide

Yuanqing Bi, Yu Wang, Xiaoli Dong*, Nan Zheng, Hongchao Ma, Xiufang Zhang

School of Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P R

China. E-mail: dongxiaoli65@163.com

Fig. S1 The standard curve of NH_3 with Nessler's regent.

Fig. S2 TEM image of H-BiOBr.

Fig. S3 FT-IR spectra of the as-prepared BiOBr and H-BiOBr.

Fig. S4 EDS spectra of H-BiOBr.

Fig. S5 The ESR spectra for different samples.

Fig. S6 Photocatalytic nitrogen fixation performance with different OVs concentrations.

Fig. S7 The comparison of photocatalytic nitrogen fixation properties of different photocatalysts.

Fig. S8 The dark nitrogen fixation experiment of two samples.

Fig. S9 The sample of BiOBr calcined with hydrogen at different temperature, 100°C (a), 200°C (b), 300°C (c).

Fig. S10 XRD patterns of BiOBr calcined with hydrogen at different temperature.

Table.	S1	The	corres	ponding	element	information	of EDS	measurement.
--------	-----------	-----	--------	---------	---------	-------------	--------	--------------

Element	Line Type	Apparent Concentration	k Ratio	Wt%	Wt% Sigma	Atomic %	Standard Label	Factory Standard	Standard Calibration
					Ū				Date
0	K series	3.64	0.01226	7.19	0.28	41.92	SiO2	Yes	
Br	L series	15.66	0.14027	23.11	0.28	26.98	KBr	Yes	
Bi	M series	52.43	0.52430	69.70	0.36	31.11	Bi	Yes	
Total:				100.00		100.00			

Table. S2 The BET surface area and Average pore Diameter of two samples

	BET surface area (m ² g ⁻¹)	Average pore Diameter (nm)
BiOBr	31.6	10.248
H-BiOBr	26.56	22.0904

Table. S3 The performance of photocatalytic nitrogen fixation for different photocatalysts under various reaction conditions.

Catalyst	Reaction	Scavenger	Light Source	NH ₃ generation	AQE	Refs
	medium			rate (g -1)		
H-BiOBr	H ₂ O	No	300 W Xenon lamp	360.8µmol/h	2.11%	This
	25 ℃		(Full Spectrum)		(λ = 380 nm)	work
CuCr-LDH	H₂O 25℃	No	300 W Xenon lamp	280µmol/h	0.22%	[1]
nanosheet			(λ>420 nm)		(λ = 380 nm)	
g-C ₃ N ₄ of nitrogen	H ₂ O	20%	300 W Xenon lamp	160µmol/h	No	[2]
vacaancy		Methanol	(λ>420 nm)			
(010) facets of BiOCl	H₂O 25℃	25%	500 W Xenon lamp	92.4µmol/h	2.15 %	[3]
		Methanol	(Full Spectrum)		(λ = 254 nm)	
(001) faces of Bi ₅ O ₇ I	H₂O 25℃	20%	300 W Xenon lamp	11.15µmol/h	2.55 %	[4]
		Methanol	(280-800 nm)		(λ = 365 nm)	
Iron titanate	H ₂ O	Ethanol	High pressure Hg lamp	11.3µmol/h	No	[5]
			(λ> 320 nm)			
TiO ₂ oxygen vacancy	H₂O 40℃	No	100 W high pressure Hg lamp	2.08µmol/h	0.35 %	[6]
			(Full Spectrum)		(λ = 350 nm)	

Notes and references

- 1 Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L.-Z. Wu, C.-H. Tung, D. O'Hare and T. Zhang, *Adv. Mater.*, 2017, **29**, 1703828.
- 2 G. Dong, W. Ho and C. Wang, J. Mater. Chem. A, 2015, **3**, 23435-23441.
- 3 H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, *Nanoscale*, 2016, **8**, 1986-1993.
- 4 Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang and D. Chen, ACS Appl. Mater. Inter., 2016, 8, 27661-27668.
- 5 O. Rusina, A. Eremenko, G. Frank, H.P. Strunk, H. Kisch, Angew. Chem. Int. Ed., 2001, 40, 3993-3995.
- 6 H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc., 2017, 139, 10929-10936.