Supporting Information

A Facile One-Step Hydrothermal Approach to Synthesize Hierarchically Core-Shell NiFe₂O₄@NiFe₂O₄ Nanosheet Arrays on Ni Foam with Large Specific Capacitance for Supercapacitors

Xinyang Zhang,^a Ziqing Zhang,^a Shuanggan Sun,^a Yunpeng Wu,^a Qiushi Sun^a and Xiaoyang Liu^{*a}

a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Tel/Fax: +86-0431-85168316. E-mail: liuxy@jlu.edu.cn

Figure S1. Low magnification SEM images.

Figure S2. EDS spectra of $NiFe_2O_4$ (@ $NiFe_2O_4$ core-shell NSAs.

Figure S3. CV curves of (a) NFNF-2, (c) NFNF-6 electrode at various scan rates ranging from 5 to 60 mV s⁻¹; CD curves of (b) NFNF-2, (d) NFNF-6 electrode at different current densities.

Nyquist plots of NFNF-2, NFNF-4 and NFNF-6 NSAs were taken in the frequency range from 0.01 Hz to 100 kHz under open circuit potential (OCP) were shown in Figure S4. The EIS plot consisted of a quasi-small semicircle in the high frequency region, representing the charge transfer process. A straight line with a slope towards the low frequency domain, represented the Warburg resistances (W_0) for three electrode materials were almost the same. In the high frequency domain, the bulk resistance (R_s) values of NFNF-2, NFNF-4 and NFNF-6 NSAs were found to be 1.02 Ω , 0.97 Ω and 1.01 Ω , respectively. As discussed above, the NFNF-4 NSAs possessed highest electronic conductivity and lowest equivalent series resistance (ESR) among the three electrodes.

Figure S4 Nyquist plots of NFNF-2, NFNF-4 and NFNF-6 NSAs.

Figure S5 SEM of NiFe₂O₄@NiFe₂O₄ core-shell NSAs after 5000 cycling tests.

Figure S6 Nyquist plots of NiFe₂O₄@NiFe₂O₄ core-shell NSAs after 5000 cycling

tests.

Samples	Mass loading (mg cm ⁻²)	<i>C</i> a (F cm ⁻²)	<i>C</i> s (F g ⁻¹)	Rate capability (%)
NFNF-2	1.18	1.13	1031.6	58.7
NFNF-4	1.31	1.65	1377.4	63.6
NFNF-6	1.43	1.55	1193.1	63.5

Table S1 The comparison results of electrochemical performance for NFNF-2, NFNF-

4 and NFNF-6 composite electrodes.

Table S2 Comparison of energy density of our hybrid supercapacitor and other previously reported asymmetric supercapacitors.

Asymmetric Supercapacitors	Energy density	Ref.
NiFe ₂ O ₄ @NiFe ₂ O ₄ //AC	45.2 Wh kg ⁻¹ at 174 W kg ⁻¹	This work
Co-Fe LDH@NiO-Ni//AC	22 Wh kg ⁻¹ at 800 W kg ⁻¹	54
NiFe ₂ O ₄ /CNT//N-doped graphene	23 Wh kg ⁻¹ at 872 W kg ⁻¹	55
Ni(OH) ₂ //Fe ₂ O ₃ /RGO/Fe ₃ O ₄	4.1 Wh kg ⁻¹ at 661.5 W kg ⁻¹	56
Ni-Fe LDH/GHA	17.6 Wh kg ⁻¹ at 650 W kg ⁻¹	57