Supplementary information

A long-persistent phosphorescent chemosensor for the detection of TNP based on CaTiO₃:Pr³⁺@SiO₂ photoluminescence materials

FangfangLi^{*a*},Xuan Hu^{*a*}, Fengyi Wang^{*a*},BaozhanZheng^{*a*}, Juan Du^{*a**}, and Dan Xiao _{*a*, *b**}

^a College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.

^b Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China

Figure S1. The phosphorescence intensity of (A) different mole ratio of Pr^{3+} doped CaTiO₃:Pr³⁺, 900 °C calcination for 3 h. (B) CaTiO₃:0.4% Pr^{3+} under different calcination time at 900 °C.

Figure S2. The phosphorescence intensity (A) and the photostability (B) of CaTiO₃:Pr³⁺ before and after coated a silica shell in PBS solution (10 mM, pH = 8, λ_{ex} = 315 nm).

Figure S3. The EDS elemental mapping images of O, Si, Ca and Ti in $CaTiO_3$: Pr^{3+} (2)SiO_2.

Figure S4. Normalized phosphorescence intensities of CaTiO₃:Pr³⁺@SiO₂ (30 µg/mL) to 200 µM TNP in the presence of 200 µM (A): (a) Na⁺, (b) Mg²⁺, (c) Al³⁺, (d) Ca²⁺, (e) Cr³⁺, (f) Mn²⁺, (g) Fe³⁺, (h) Co²⁺, (i) Ni²⁺, (j) Cu²⁺, (k) Zn²⁺, (l) Cd²⁺, (m) Ag⁺, (n) Hg²⁺, (o) Pb²⁺. (B): (a) F⁻, (b) Cl⁻, (c) Br⁻, (d) I⁻, (e) CO₃²⁻, (f) oxalate, (g) citrate, (h) NO₃⁻, (i) NO₂⁻, (g) SO₄²⁻, (k) SO₃²⁻, (l) S²⁻, (m) PO₄³⁻. (C): (C): (a) Phenol, (b) NT, (c) DNT, (d) TNT, (e) NP, (f) DNP, (g) Blank.

Figure S5. The UV-Vis absorption spectra of $CaTiO_3$: Pr^{3+} @SiO₂ with different concentrations of TNP (0, 0.5, 1, 2, 5, 10, 20, 50 and 100 μ M) in 10 mM PBS buffer (pH 8.0).

Figure S6. FT-IR spectra of CaTiO₃:Pr³⁺@SiO₂ (a), TNP (b) and CaTiO₃:Pr³⁺@SiO₂ and TNP

mixture(c)

Figure S7. ζ-potential of CaTiO₃:Pr³⁺@SiO₂ (A), and CaTiO₃:Pr³⁺@SiO₂ with NP (B), DNP

(C) and TNP (D)

System	LOD	Linear range	K _{SV} (M ⁻¹)	Reference
Molybdenum disulfide (MoS ₂) quantum dots	95 nM	0.099-36.5 μM	4.3×10 ⁴	1
8-Hydroxyquinoline aluminum (Alq3)-based composite nanospheres	32.3 μg/mL (0.141 μM)	0.05-70 μg/mL (0.218-305 μM)	N/A	2
2,6-Diamino pyridine functionalized grapheme oxide (DAP-RGO)	125 nM	N/A	1.322×10 ⁵	3
Ratiometric NIR fluorescent probe DNSA- SQ	70 nM	5-100 μM	N/A	4
1,8-Naphthalimide - anthracene (Nph-An)	0.47 µM	N/A	7.0×10 ⁴	5
Nitrogen doped graphene quantum dots	0.3 μΜ	1-60 µM	N/A	6
CaTiO ₃ :Pr ³⁺ @SiO ₂ photoluminescence materials	20.6 nM	0.5-100 μM	1.25×10 ⁴	This work

Table S1. Comparison of different system for TNP detection

	TNP	Proposed method				
Samples	Added	Found	Recovery	SD (n=3)	RSD (n=3)	
	(µM)	(µM)	(%)	(µM)	(%)	
1	20.00	20.32	101.60	0.16	0.79	
2	50.00	49.67	99.34	0.07	0.14	
3	80.00	80.26	100.33	0.48	0.56	

Table S2. Determination of TNP in pond water samples

References

- 1 Y. Wang, Y. Ni, Anal. Chem., 2014, 86, 7463-7470.
- 2 Y. Ma, H. Li, S. Peng, L. Wang, Anal. Chem., 2012, 84, 8415-8421.
- 3 D. Dinda, A. Gupta, B. K. Shaw, S. Sadhu, S. K. Saha, *Acs Appl. Mater. Inter.*, 2014, **6**, 10722-10728.
- 4 Y. Xu, B. Li, W. Li, J. Zhao, S. Sun, Y. Pang, Chem. Commun., 2013, 49, 4764-4766.
- 5 H. Ma, C. He, X. Li, O. Ablikim, S. Zhang, M. Zhang, *Sensor. Actuat .B Chem.*, 2016, 230, 746-752.
- 6 L. Lin, M. Rong, S. Lu, X. Song, Y. Zhong, J. Yan, Y. Wang, X. Chen, *Nanoscale*, 2015, 7, 1872-1878.