Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

An eco-compatible pathway to the synthesis of mono and bis-multisubstituted imidazoles over novel reusable ionic liquids: an efficient and green sonochemical process

Wael Abdelgayed Ahmed Arafa^{a,b}

^aChemistry Department, College of Science, Jouf University, P.O. Box 72341, Sakaka, Aljouf, Kingdom of Saudi Arabia.

^bChemistry Department, Faculty of Science, Fayoum University P.O. Box 63514, Fayoum City, Egypt.

E-mail:waa00@fayoum.edu.eg

Table of Contents

Entry	Content	Page
1	Experimental	S1-S3
2	Syntheses	S4-S16
3	Copies of ¹ H NMR spectra	S17-S29

Experimental

Chemical reagents in high purity were obtained commercially and were used without further purification. Melting points were determined in open capillaries using an Electrothermal IA9100 melting point apparatus (UK). ¹H and ¹³C NMR spectra were recorded using a Bruker UltraShield spectrometer at 400 and 100 MHz, respectively. High resolution mass spectra (HRMS) were performed utilizing a Bruker Daltonics microTOF spectrometer. FT-IR spectra were obtained with potassium bromide pellets in the range of 400–4000 cm⁻¹ using a Perkin-Elmer Spectrum One spectrometer. Ultrasonication was done in a SY5200DH-T ultrasound cleaner.

Synthesis of the catalysts [DABCO-DOL][X] (3a-c):

A mixture of 1,4-diazobicyclo[2.2.2]octane (DABCO) (0.224 g, 2 mmol) and 2chloro-1,3-propandiol (0.22 g, 2 mmol) in EtOH (15 mL) was sonicated for 3 h (TLC). Then, the solvent was removed under reduced pressure to afford compound (**2**). Then, NaOAc (0.164 g, 2 mmol), KPF₆ (0.368 g, 2 mmol) and/or NaBF₄ (0.22 g, 2mmol) was appended to the residue **2** (0.444 g, 2 mmol) in EtOH (20 mL). The resulting solution was sonicated for 2 h and then, the solvent was evaporated in vacuo to afford the corresponding ILs (**3a–c**) in quantitative yields.

General procedure for the preparation of imidazoles 6a–p and bis-imidazoles 10a–f.

A 25 mL Erlenmeyer flask was charged with aldehydes, **4a–p**, (1 mmol) and/or dialdehyde, **9a–f**, (0.5 mmol), benzil (1 mmol in case of **4a–p**, and 2 mmol in case of **9a–f**), NH₄OAc (2.5 mmol in case of **4a–p**, and 4.5 mmol in case of **9a–f**), and **3a** (5% mol in case of **4a–p**, and 8% mol in case of **9a–f**) in 5 mL water. The reaction vessel was placed in the ultrasonic bath, where the surface of solution is

slightly lower than the water level, the reaction mixture was exposed to ultrasound irradiation at 60 °C for appropriated time. After completion of reaction (confirmed by TLC, eluent: MeOH/DCM = 1 : 4 vol.), the solid that separated out was filtered washed with H_2O , dried and recrystallized from a proper solvent to afford the analytically pure product. The catalyst was recovered from the aqueous layer under vacuum, washed with ethyl acetate and reused for the next reactions. All known products were confirmed by comparing their melting points and NMR spectra (see SI).

General procedure for the synthesis of imidazoles 8a-j and bis-imidazoles 11a-f.

A 25 mL Erlenmeyer flask was charged with aldehydes (4a–p, 1 mmol) and/or dialdehyde (9a–f, 0.5 mmol), benzil (1 mmol in case of 4a–p, and 2 mmol in case of 9a–f), ammonium acetate (1mmol in case of 4a–p, and 2 mmol in case of 9a–f), amines (7a–e, 1 mmol, in case of 4a–p) and/or aniline (1 mmol, in case of 9a–f) and 3a (5% mol in case of 4a–p and 8 mmol in case of 9a–f) in 5 mL water. The reaction flask was located in the ultrasonic bath, where the surface of reactants is slightly lower than the level of the water, the reaction mixture was exposed to ultrasound irradiation at 60 °C for appropriated time. After completion of reaction (confirmed by TLC, eluent: MeOH/DCM = 1 : 3 vol.), the solid that separated out was filtered washed with water, dried and recrystallized from dioxane containing few drops of DMF to afford the analytically pure product.

Ionic liquid [DABCO-DOL][AcO] (3a)

Yield 99%; colorless liquid; ¹H NMR (400 MHz, DMSO): δ 4.64-4.61 (m, 2H, 2OH), 3.80-3.56 (m, 11H, CH₂), 3.42-3.20 (m, 6H, CH₂), 1.56 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO): δ 175.8 (CO), 77.3, 66.9, 63.4, 47.8, 26.4; IR (KBr, cm⁻¹): v_{max} 3216 (OH), 1681 (C=O); Anal. Calcd. for C₁₁H₂₂N₂O₄: C, 53.64; H, 9.00; N, 11.37. Found: C, 53.60; H, 9.08; N, 11.29%.

Ionic liquid [DABCO-DOL][BF₄] (3b)

Yield 96%; colorless liquid; ¹H NMR (400 MHz, DMSO): δ 4.64-4.61 (m, 2H, 2OH), 3.85-3.68 (m, 6H, CH₂), 3.17-3.16 (m, 11H, CH₂); ¹³C NMR (100 MHz, DMSO): δ 77.5, 67.1, 64.1, 47.2; IR (KBr, cm⁻¹): v_{max} 3328 (OH); Anal. Calcd. for C₉H₁₉BF₄N₂O₂: C, 39.44; H, 6.99; N, 10.22. Found: C, 39.37; H, 7.07; N, 10.17%.

Ionic liquid [DABCO-DOL][PF₆] (3c)

Yield 98%; colorless liquid; ¹H NMR (400 MHz, DMSO): δ 4.66-4.64 (m, 2H, 2OH), 4.12-4.10 (m, 11H, CH₂), 3.78-3.73 (m, 6H, CH₂); ¹³C NMR (100 MHz, DMSO): δ 77.7, 67.4, 64.3, 47.6; IR (KBr, cm⁻¹): v_{max} 3338 (OH); Anal. Calcd. for C₉H₁₉F₆N₂O₂P: C, 32.54; H, 5.76; N, 8.43. Found: C, 32.50; H, 5.82; N, 8.37%.

General procedure for the synthesis of imidazoles 6a-j and bis-imidazoles 10af.

A 25 mL Erlenmeyer flask was charged with benzil (1 mmol), aldehydes (1 mmol) and/or dialdehyde (0.5 mmol), ammonium acetate (3 equiv), and **3a** (5% mol) in 5 mL water. The reaction flask was located in the ultrasonic bath, where the surface

of reactants is slightly lower than the level of the water, the reaction mixture was exposed to ultrasound irradiation at 60 °C for appropriated time. After completion of reaction (confirmed by TLC, eluent: MeOH/DCM = 1 : 4 vol.), the solid separated out was filtered washed with water, dried and recrystallized from dioxane to afford the analytically pure product. Aqueous layer containing catalyst was recovered under reduced pressure, washed with DCM and reused for subsequent reactions. All known products were confirmed by comparing their melting points and NMR spectra. The spectral data for newly synthesized compounds were given below.

General procedure for the synthesis of imidazoles 8a-j and bis-imidazoles 11af.

A 25 mL Erlenmeyer flask was charged with benzil (1 mmol), aldehydes (1 mmol) and/or dialdehyde (0.5 mmol), ammonium acetate (1 mmol), aniline (1 mmol) and **3a** (10% mol) in 8 mL water. The reaction flask was located in the ultrasonic bath, where the surface of reactants is slightly lower than the level of the water, the reaction mixture was exposed to ultrasound irradiation at 60 °C for appropriated time. After completion of reaction (confirmed by TLC, eluent: MeOH/DCM = 1 : 3 vol.), the solid separated out was filtered washed with water, dried and recrystallized from dioxane containing few drops of DMF to afford the analytically pure product. Aqueous layer containing catalyst was recovered under reduced pressure, washed with DCM and reused for subsequent reactions.

2,4,5-Triphenyl-1*H*-imidazole (6a)

Yield 99%; white solid; mp 272-273 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.71 (s, 1H, NH), 8.08 (d, *J* = 7.2 Hz, 2H, Ar-H), 7.54-7.22 (m, 13H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 145.8, 137.6, 135.4, 131.5, 130.8, 129.3, 128.8, 128.5,

128.2, 127.4, 127.0, 125.5; Anal. Calcd for C₂₁H₁₆N₂: C, 85.11; H, 5.44; N, 9.45. Found: C, 85.13; H, 5.42; N, 9.39.

2-(4-Methoxyphenyl)-4,5-diphenyl-1*H*-imidazole (6b)

Yield 99%; white solid; mp 230-232 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.50 (s, 1H, NH), 8.00 (d, J = 8.2 Hz, 2H, Ar-H), 7.55-7.21 (m, 10H, Ar-H), 7.04 (d, J = 8.2 Hz, 2H, Ar-H), 3.81 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO-d₆): δ 159.6, 146.1, 129.3, 128.6,128.3, 128.0, 127.4, 127.1, 126.7, 123.5, 114.3, 55.4. Anal. Calcd for C₂₂H₁₈N₂O: C, 80.96; H, 5.56; N, 8.58. Found: C, 80.90; H, 5.59; N, 8.49.

4-(4,5-Diphenyl-1*H*-imidazol-2-yl)phenol (6c)

Yield 98%; white solid; mp 234-236 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.40 (s, 1H, NH), 9.74 (br, 1H, OH), 7.90 (d, J = 8.4 Hz, 2H, Ar-H), 7.52-7.15 (m, 10H, Ar-H), 6.85 (d, J = 8.3 Hz, 2H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 158.1, 146.4, 137.2, 135.7, 131.9, 129.1, 128.9, 128.3, 128.1, 127.6, 127.1, 126.8, 126.3, 121.7, 116.2. Anal. Calcd for C₂₁H₁₆N₂O: C, 80.75; H, 5.16; N, 8.97. Found: C, 80.79; H, 5.11; N, 8.94.

4-(4,5-Diphenyl-1*H*-imidazol-2-yl)-*N*,*N*-dimethylaniline (6d)

Yield 97%; white solid; mp 255-227 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.47 (s, 1H, NH), 7.89-7.88 (m, 1H, Ar-H); 7.52-7.50 (m, 2H, Ar-H); δ 7.27-7.36 (m, 10H, Ar-H); δ 6.80-6.79 (m, 1H, Ar-H); δ 3.51 (s, 6H, CH₃); ¹³C NMR (101 MHz, DMSO-d₆): δ 149.9, 146.4, 127.7, 126.1, 125.5, 117.8, 111.6, 39.6; Anal. Calc. for C₂₃H₂₁N₃: C, 81.38; H, 6.24; N, 12.38. Found: C, 81.41; H, 6.21; N, 12.35.

2-(4,5-diphenyl-1*H*-imidazol-2-yl)phenol (6e)

Yield 95%; white solid; mp 202-204 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.04 (s, 1H, NH), 13.02 (s, 1H, OH), 8.04 (d, *J* = 7.3 Hz, 1H, Ar-H), 7.53-7.23 (m, 11H, Ar-H), 7.01-6.90 (m, 2H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 157.1, 146.2, 134.6, 134.2, 130.3, 129.5, 128.6, 127.4, 125.1, 119.3, 117.2, 113.0; Anal. Calcd for C₂₁H₁₆N₂O: C, 80.75; H, 5.16; N, 8.97. Found: C, 80.73; H, 5.15; N, 8.90.

2-(3,4-Dimethoxyphenyl)-4,5-diphenyl-1*H*-imidazole (6f)

Yield 98%; white solid; mp 214-216 °C; ¹H NMR(400 MHz, DMSO-d₆): δ 12.55 (s, 1H, NH), 8.07-8.04 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.66-7.31 (m, 10H, Ar-H), 7.01-6.99 (d, *J* = 8.7 Hz, 1H, Ar-H), 3.89 (s, 6H, *CH*₃); ¹³C NMR (100MHz, DMSO-d₆): δ 150.6, 148.4, 145.1, 133.1, 129.4, 129.2, 129.0, 128.6, 128.7, 127.4, 124.5, 121.4, 115.6, 111.9, 56.3; Anal. Calcd for C₂₃H₂₀N₂O₂: C, 77.51; H, 5.66; N, 7.86. Found: C, 77.48; H, 5.69; N, 7.78.

4,5-Diphenyl-2-(*p*-tolyl)-1*H*-imidazole (6g)

Yield 95%; white solid: mp: 230–232 °C; ¹H NMR(400 MHz, DMSO-d₆): δ 12.57 (s, 1H, NH), 8.06-8.03 (d, *J* = 8.2 Hz, 2H, Ar-H), 7.55-7.23 (m, 10H, Ar-H), 7.07-7.04 (d, *J* = 8.2 Hz, 2H, Ar-H), 2.31 (s, 3H, CH₃); ¹³C NMR (100MHz, DMSO-d₆): δ 145.9, 137.3, 137.1, 135.5, 131.8, 129.3, 128.7, 128.1, 127.9, 127.6, 127.2, 126.9, 126.5, 125.2, 21.3; Anal. Calcd for C₂₂H₁₈N₂: C, 85.13; H, 5.85; N, 9.03. Found: C, 85.10; H, 5.89; N, 8.88.

2-(4-Fluorophenyl)-4,5-diphenyl-1*H*-imidazole (6h)

Yield 96%; white solid; mp: 260–262 °C; ¹H NMR(400 MHz, DMSO-d₆): δ 12.70 (s, 1H, NH), 8.16-8.13 (d, *J* = 8.2 Hz, 2H, Ar-H), 8.11-8.06 d, *J* = 8.2 Hz, 2H, Ar-H), 7.58-7.54 (t, *J* = 7.9 Hz, 4H, Ar-H), 7.41-7.21 (m, 6H, Ar-H); ¹³C NMR (100MHz, DMSO-d₆): δ 146.5, 130.6, 130.3, 129.6, 129.1, 128.4, 127.6, 127.3,

126.5, 125.5, 125.4, 123.7, 116.0; Anal. Calcd for C₂₁H₁₅FN₂: C, 80.24; H, 4.81; N, 8.91. Found: C, 80.20; H, 4.89; N, 8.86.

2-(4-Bromophenyl)-4,5-diphenyl-1*H*-imidazole (6i)

Yield 98%; white solid; mp: 265–266 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.77 (s, 1H, NH), 8.01 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.67 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.50 (d, *J* = 7.5 Hz, 4H, Ar-H), 7.34 (m, 6H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆) δ 144.9, 137.6, 135.3, 133.3, 131.4, 129.5, 128.7, 128.2, 128.0, 127.6, 127.4, 127.1 Anal. Calcd for C₂₁H₁₅N₂Br: C, 67.21; H, 4.03; N, 7.47. Found: C, 67.23; H, 4.01; N, 7.41.

2-(2-Chlorophenyl)-4,5-diphenyl-1*H*-imidazole (6j)

Yield 98%; white solid; mp: 192–193 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.64 (s, 1H, NH), 7.8-7.20 (m, 14 H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆) δ 143.9, 137.1, 135.2, 132.4, 131.3, 130.9, 130.5, 129.0, 128.5, 128.2, 128.0, 127.7, 127.2. Anal. Calcd for C₂₁H₁₅N₂Cl: C, 76.24; H, 4.57; N, 8.47. Found: C, 76.29; H, 4.50; N, 8.40.

2-(4-Chlorophenyl)-4,5-diphenyl-1*H*-imidazole (6k)

Yield 98%; white solid; mp: 263-265 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.72 (s, 1H, NH), 8.10 (d, J = 8.7 Hz, 2H, Ar-H), 7.55-7.30 (m, 12H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 145.1, 137.6, 135.5, 133.8, 131.3, 129.9, 129.7, 129.3, 128.7, 128.3, 128.0, 127.6, 126.4. Anal. Calcd for C₂₁H₁₅N₂Cl: C, 76.24; H, 4.57; N, 8.47. Found: C, 76.28; H, 4.52; N, 8.41.

2-(2,4-dichlorophenyl)-4,5-diphenyl-1*H*-imidazole (6l)

Yield 96%; white solid; mp: 171-173 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.70 (s, 1H, NH), 7.64-7.19 (m, 13H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 141.0, 136.9, 136.4, 135.3, 132.6, 131.7, 130.4, 129.5, 128.7, 128.3, 128.0, 127.8, 127.7, 127.4, 127.0. Anal. Calcd for C₂₁H₁₄N₂Cl₂: C, 69.05; H, 3.86; N, 7.67. Found: C, 69.01; H, 3.89; N, 7.61.

2-(4-Nitrophenyl)-4,5-diphenyl-1*H*-imidazole (6m)

Yield 96%; light yellow; mp: 242–243°C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.95 (s, 1H, NH), 8.01 (d, *J* = 7.8 Hz, 1H, Ar-H), 7.90 (d, *J* = 7.7 Hz, 1H, Ar-H), 7.76 (t, *J* = 7.7 Hz, 1H, Ar-H), 7.69 (t, *J* = 7.8 Hz, 1H, Ar-H), 7.49-7.35 (m, 10H, Ar-H). Anal. Calcd for C₂₁H₁₅N₃O₂: C, 73.89; H, 4.43; N, 12.31. Found: C, 73.93; H, 4.40; N, 12.28.

4,5-Diphenyl-2-(thiophen-2-yl)-1*H*-imidazole (6n)

Yield 99%; light yellow; mp: 255-257 °C; ¹H NMR (DMSO-d₆): δ 12.79 (s, 1H, NH), 7.70 (dd, 1H, J = 1.5, 1.1 Hz, thienyl-H3), 7.55 (dd, 1H, J = 1.1 Hz, thienyl-H5), 7.51-7.23 (m, 10H, Ar-H), 7.17 (t, 1H, J = 4.4Hz, thienyl-H); Anal. Calcd for C₁₉H₁₄N₂S: C, 75.47; H, 4.67; N, 9.26. Found: C, 75.40; H, 4.71; N, 9.21.

2-(Furan-2-yl)-4,5-diphenyl-1*H*-imidazole (60)

Yield 98%; white; mp: 201–202 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 11.22 (s, 1H, NH), 7.57-7.44 (m, 3H, Ar-H), 7.15-7.6 (m, 10H, Ar-H); ¹³C NMR (101MHz, DMSO-d₆): δ 148.8, 143.7, 140.0, 138.6, 130.4, 129.5, 128.5, 127.7, 127.6, 127.3, 124.2, 123.3, 118.0, 112.4, 108.5; Anal. Calcd for C₁₉H₁₄N₂O: C, 79.70; H, 4.93; N, 9.78. Found: C, 79.74; H, 4.90; N, 9.75.

2-Methyl-4,5-diphenyl-1*H*-imidazole (6p)

Yield 99%; white; mp: 244-246 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.0 (s, 1H, NH), 8.12-7.27 (m, 10H, Ar-H), 2.36 (s, 3H, CH₃); ¹³C NMR (101MHz, DMSO-d₆): δ 150.6, 133.1, 128.3, 128.3, 127.5, 127.3, 17.7; Anal. Calcd for C₁₆H₁₄N₂: C, 82.02; H, 6.02; N, 11.96. Found: C, 82.06; H, 5.96; N, 11.91.

1,2,4,5-Tetraphenyl-1*H*-imidazole (8a)

Yield 98%; light yellow; mp: 220–222 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.63 (d, *J* = 7.3 Hz, 2H, Ar-H), 7.44 (d, *J* = 7.4 Hz, 2H, Ar-H), 7.27-7.21 (m, 12H, Ar-H), 7.14 (d, *J* = 7.1 Hz, 2H, Ar-H), 7.06 (d, *J* = 7.1 Hz, 2H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 146.7, 138.1, 137.2, 134.4, 131.1, 130.9, 130.7, 130.4, 129.2, 128.8, 128.5, 128.4, 128.3, 128.1, 128.0, 127.8, 127.3, 126.8; Anal. Calcd for C₂₇H₂₀N₂: C, 87.07; H, 5.41; N, 7.52. Found: C, 87.04; H, 5.49; N, 7.48.

1,4,5-Triphenyl-2-(*p*-tolyl)-1*H*-imidazole (8b)

Yield 96%; white; mp: 188-189 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.60 (d, J = 7.5 Hz, 2H, Ar-H), 7.31-7.02 (m, 17H, Ar-H), 2. 31 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO-d₆): δ 147.2, 138.6, 137.3, 134.3, 131.5, 130.7, 130.1, 129.4, 128.8, 128.4, 128.2, 128.0, 127.8, 127.3, 127.1, 126.5, 21.3; Anal. Calcd for C₂₈H₂₂N₂: C, 87.01; H, 5.74; N, 7.25. Found: C, 87.09; H, 5.70; N, 7.19.

2-(4-Methoxyphenyl)-1,4,5-triphenyl-1*H*-imidazole (8c)

Yield 96%; white; mp: 183-185 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.60-7.03 (m, 17H, Ar-H), 6.74 (d, *J* = 8.1 Hz, 2H, Ar-H), 3.78 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO-d₆): δ 159.4, 146.7, 137.6, 137.0, 134.4, 131.3, 130.1, 129.2, 128.7, 128.3, 128.0, 127.8, 127.1, 126.4, 123.1, 113.5, 55.2. Anal. Calcd for C₂₈H₂₂N₂: C, 83.56; H, 5.51; N, 6.96. Found: C, 83.50; H, 5.58; N, 7.03.

2-(4-Chlorophenyl)-1,4,5-triphenyl-1*H*-imidazole (8d)

Yield 95%; white; mp: 161-162 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.59 (d, J = 7.8 Hz, 2H, Ar-H), 7.35 (d, J = 8.0 Hz, 2H, Ar-H), 7.31-7.20 (m, 11H, Ar-H), 7.11 (d, J = 7.6 Hz, 2H, Ar-H), 7.04 (d, J = 7.6 Hz, 2H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 145.6, 138.4, 136.8, 134.0, 131.3, 130.2, 130.2, 129.5, 129.0, 128.4, 128.4, 128.6, 128.1, 127.3, 126.6. Anal. Calcd for C₂₇H₁₉ClN₂: C, 79.70; H, 4.71; N, 6.88. Found: C, 79.78; H, 4.67; N, 6.80.

2-(4-Bromophenyl)-1,4,5-triphenyl-1*H*-imidazole (8e)

Yield 96%; white; mp: 209-211°C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.60 (d, J = 9.3 Hz, 2H, Ar-H), 7.39-7.03 (m, 17H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆): δ 145.5, 138.6, 136.9, 134.1, 131.0, 131.5, 131.2, 130.6, 130.3, 129.6, 129.1, 128.5, 128.3, 128.1, 128.0, 127.7, 126.7, 122.2. Anal. Calcd for C₂₇H₁₉BrN₂: C, 71.85; H, 4.24; N, 6.21. Found: C, 71.89; H, 4.20; N, 6.18.

1-Benzyl-2,4,5-triphenyl-1*H*-imidazole (8f)

Yield 98%; white; mp: 160-164 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.66 (dd, *J* = 3.9, 7.5 Hz, 2H, Ar-H), 7.57-7.55 (m, 2H, Ar-H), 7.40 (t, *J* = 5.7 Hz, 2H, Ar-H), 7.38-7.26 (m, 4H, Ar-H), 7.23-7.11 (m, 8H, Ar-H), 6.78 (dd, *J* = 7.1, 3.4, Hz, 2H, Ar-H), 5.10 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-d₆): δ 148.1, 137.5, 131.1, 130.0, 129.1, 128.9, 128.7, 128.5, 128.0, 127.3, 126.8, 126.3, 126.0, 48.3; Anal. Calcd for C₂₈H₂₂N₂: C, 87.01; H, 5.74; N, 7.25. Found: C, 86.91; H, 5.79; N, 7.20.

1-(4-Methoxybenzyl)-2,4,5-triphenyl-1*H*-imidazole (8g)

Yield 98%; white; mp: 150-153 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.67-7.65 (m, 2H, Ar-H), 7.58-7.55 (m, 2H, Ar-H), 7.45-7.42 (m, 2H, Ar-H), 7.38-7.34 (m,

4H, Ar-H), 7.19-7.13 (m, 5H, Ar-H), 6.76-6.66 (m, 4H, Ar-H), 5.04 (s, 2H, CH₂), 3.78 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ 164.3, 158.5, 147.6, 138.2, 134.3, 131.5, 130.7, 130.3, 129.4, 129.0, 128.7, 128.5, 128.3, 128.0, 127.4, 126.5, 126.4, 114.3, 55.2, 47.7; Anal. Calcd for C₂₉H₂₄N₂O: C, 83.63; H, 5.81; N, 6.73. Found: C, 83.60; H, 5.77; N, 6.69.

1-(4-Methylbenzyl)-4,5-diphenyl-2-*p*-tolyl-1*H*-imidazole (8h):

Yield 98%; white; mp: 132-135 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.58-7.55 (m, 4H, Ar-H), 7.36-7.34 (m, 2H, Ar-H), 7.24-7.19 (m, 8H, Ar-H), 7.01 (d, *J* = 7.7 Hz, 2H, Ar-H), 6.71 (d, *J* = 7.9 Hz, 2H, Ar-H), 5.07 (s, 2H, CH₂), 2.41 (s, 3H, CH₃), 2.30 (s, 3H, CH₃); 147.8, 138.6, 137.5, 136.2, 134.0, 133.7, 130.5, 130.4, 129.6, 129.1, 128.7, 128.5, 128.3, 128.2, 128.0, 127.6, 127.4, 126.7, 126.1, 125.4, 47.7, 21.0, 20.5; Anal. Calcd for C₃₀H₂₆N₂: C, 86.92; H, 6.32; N, 6.76. Found: C, 86.88; H, 6.37; N, 6.70.

1-(4-Fluorobenzyl)-2-(4-fluorophenyl)-4,5-diphenyl-1*H*-imidazole (8i)

Yield 96%; white; mp: 158-161 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.64-7.55 (m, 4H, Ar-H), 7.42-7.33 (m, 4H, Ar-H), 7.25-7.16 (m, 4H, Ar-H), 7.19-7.09 (m, 2H, Ar-H), 6.90 (t, *J* = 8.8 Hz, 2H, Ar-H), 6.71 (dd, *J* = 8.8, 4.7 Hz, 2H, Ar-H), 5.04 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-d₆): δ 131.3, 131.1, 129.9, 128.6, 128.6, 128.0, 127.6, 127.3, 126.6, 126.4, 115.7, 115.3, 115.0, 114.8, 47.5; Anal. Calcd for C₂₈H₂₀F₂N₂: C, 79.60; H, 4.77; N, 6.63. Found: C, 79.66; H, 4.71; N, 6.60.

1-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-4,5-diphenyl-1*H*-imidazole (8j)

Yield 96%; white; mp: 152-154 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.55 (t, *J* = 8.8 Hz, 4H, Ar-H), 7.39-7.26 (m, 4H, Ar-H), 7.23-7.14 (m, 4H, Ar-H), 6.90 (d, *J* = 8.8 Hz, 2H, Ar-H), 6.77-6.65 (m, 4H, Ar-H), 5.04 (s, 2H, CH₂), 3.81 (s, 3H, CH₃),

3.76 (3H, s, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ 160.2, 158.6, 147.5, 134.7, 131.0, 130.9, 130.6, 129.7, 128.9, 128.4, 128.1, 127.4, 126.7, 126.3, 123.5, 114.3, 114.0, 55.4, 55.0, 47.5; Anal. Calcd for C₃₀H₂₆N₂O₂: C, 80.69; H, 5.87; N, 6.27. Found: C, 80.74; H, 5.81; N, 6.22.

2,6-bis(4,5-Diphenyl-1H-imidazol-2-yl)-4-methylphenol (10a) [1]

Yield 98%; yellow solid; mp = 210–212 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 14.10 (s, 1H, OH); 12.54 (s, 2H, NH); 7.96 (s, 2H, Ar-H); 7.55 (d, *J* = 7.2 Hz, 8H, Ar-H); 7.37-7.29 (m, 12H, Ar-H); 2.41 (s, 3H, *CH*₃); ¹³C NMR (100 MHz, DMSO-d₆): δ 158.0, 148.4, 137.8, 136.3, 134.1, 130.8, 129.2, 128.4, 128.2, 127.6, 127.2, 125.4, 115.1, 21.7; IR (KBr, cm⁻¹): v_{max} 3401-3059 (NH + OH), 1611 (C=N), 1595 (C=C); MS (ESI) *m/z* (%): 544.22 (M⁺, 2.9%), 103 (100); Anal. Calc. for C₃₇H₂₈N₄O: C, 81.59; H, 5.13; N, 10.29%. Found: C, 81.47; H, 5.11; N, 10.24%

4-Bromo-2,6-bis(4,5-diphenyl-1*H*-imidazol-2-yl)phenol (10b)

Yield 95%; yellow solid; mp = 264–266 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.01 (s, 1H, OH), 12.52 (s, 2H, NH), 8.01 (d, J = 8.1 Hz, 4H, Ar-H), 7.54-7.20 (m, 14H, Ar-H), 7.03 (d, J = 8.1 Hz, 4H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆) δ 159.2, 146.7, 137.6, 129.1, 128.8, 128.4, 128.0, 127.3, 127.0, 126.4, 123.9; IR (KBr, cm⁻¹): v_{max} 3376-3138 (OH and NH), 1642 (C=N), 1606 (C=C); HRMS: m/z [M]⁺ calcd: 608.1213, found 608.1209; Anal. Calc. for C₃₆H₂₅BrN₄O: C, 70.94; H, 4.13; N, 9.19 %. Found: C, 71.02; H, 4.09; N, 9.12%.

3,5-bis(4,5-Diphenyl-1H-imidazol-2-yl)-4-hydroxybenzoic acid (10c)

Yield 89%; yellow solid; mp = 289–291 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.05 (s, 2H, OH), 13.00 (s, 2H, NH), 8.05 (d, *J* = 7.3 Hz, 2H, Ar-H), 7.52-7.24 (m, 17H, Ar-H), 6.99-6.92 (m, 3H, Ar-H); ¹³C NMR (101 MHz, DMSO-d₆) δ

169.1, 157.9, 145.0, 137.8, 133.3, 131.5, 129.7, 129.3, 129.1, 128.9, 128.7, 128.4, 127.6, 122.4; IR (KBr, cm⁻¹): v_{max} 3416-3138 (OH and NH), 1669 (C=O), 1638 (C=N), 1597 (C=C); HRMS: m/z [M - H]⁺ calcd: 573.1926, found 573.1928; Anal. Calc. for C₃₇H₂₆N₄O₃: C, 77.34; H, 4.56; N, 9.75%. Found: C, 77.29; H, 4.58; N, 9.68%.

1,4-bis(4,5-Diphenyl-1*H*-imidazol-2-yl)benzene (10d) [2]

Yield 97%; yellow solid; mp = 234–237 °C (lit., mp = 232–235); ¹H NMR (400 MHz, DMSO): δ 12.74 (s, 2H, NH), 8.18 (s, 4H, Ar–H), 7.58–7.53 (m, 8H, Ar–H), 7.51–7.47 (m, 6H, Ar–H), 7.44–7.23 (m, 6H, Ar–H); ¹³C NMR (100 MHz, DMSO): δ 145.2, 135.0, 131.2, 128.6, 128.5, 128.2, 127.7, 127.2, 126.6, 125.3; IR (KBr, cm⁻¹): v_{max} 3413-3124 (NH), 1638 (C=N), 1616 (C=C); HRMS: *m/z* [M + H]⁺ calcd: 515.2237, found 515.2234; Anal. Calc. for C₃₆H₂₆N₄: C, 84.02; H, 5.09; N, 10.89%. Found: C, 83.97; H, 5.14; N, 10.80%.

2,2'-(1*H*-Pyrazole-3,5-diyl)*bis*(4,5-diphenyl-1*H*-imidazole) (10e)

Yield 92%; yellow solid; mp = 361-363 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.96 (s. 2H, NH), 12.64 (s, 1H, NH), 7.55 (br, 6H, Ar-H), 7.42-7.22 (m, 14H, Ar-H), 6.80 (s, 1H, pyrazole-H); ¹³C NMR (101 MHz, DMSO-d₆) δ 161.3, 137.5, 132.0, 129.0, 128.6, 128.2, 127.5, 106.6; IR (KBr, cm⁻¹): v_{max} 3223-3168 (NH), 1636 (C=N), 1604 (C=C); HRMS: m/z [M + H]⁺ calcd: 505.2140, found 505.2138; Anal. Calc. for C₃₃H₂₄N₆: C, 78.55; H, 4.79; N, 16.66%. Found: C, 78.51; H, 4.84; N, 16.58%.

4,4'-Methylenebis(2-(4,5-diphenyl-1*H*-imidazol-2-yl)phenol) (10f)

Yield 94%; yellow solid; mp = 348–351 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.44 (s, 2H, NH), 9.32 (s, 2H, OH), 7.64 (s, 2H, Ar-H), 7.52-7.19 (m, 20H, Ar-

H), 6.86 (d, J = 8.1 Hz, 4H, Ar-H), 3.85 (s, 2H, CH₂); ¹³C NMR (101 MHz, DMSO-d₆): δ 152.4, 148.1, 137.5, 136.5, 130.5, 129.8, 129.1, 128.8, 128.6, 127.5, 118.8, 116.0, 56.1; IR (KBr, cm⁻¹): v_{max} 3230-3173 (NH), 1641 (C=N), 1616 (C=C); HRMS: m/z [M - H]⁺ calcd: 635.2446, found 635.2449; Anal. Calc. for C₄₃H₃₂N₄O₂: C, 81.11; H, 5.07; N, 8.80%. Found: C, 81.18; H, 5.01; N, 8.77%.

4-Methyl-2,6-bis(1,4,5-triphenyl-1*H*-imidazol-2-yl)phenol (11a)

Yield 95%; yellow solid; mp = 377–380 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.64 (s, 1H, OH), 7.60 (d, J = 7.6 Hz, 2H, Ar-H), 7.33-7.22 (m, 17H, Ar-H), 7.19-7.04 (m, 13H, Ar-H), 2.31 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO-d₆): δ 151.6, 147.0, 138.1, 137.2, 134.5, 131.1, 130.7, 130.6, 129.0, 128.8, 128.4, 128.3, 128.1, 127.8, 127.6, 127.4, 126.5, 119.0, 21.2; IR (KBr, cm⁻¹): v_{max} 3378-3102 (OH), 1632 (C=N), 1609 (C=C); HRMS: m/z [M + H]⁺ calcd: 697.2968, found 697.2965; Anal. Calc. for C₄₉H₃₆N₄O: C, 84.46; H, 5.21; N, 8.04%. Found: C, 84.51; H, 5.19; N, 7.94%.

4-Bromo-2,6-bis(1,4,5-triphenyl-1*H*-imidazol-2-yl)phenol (11b)

Yield 93%; yellow solid; mp > 400 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 12.64 (s, 1H, OH), 7.79-7.21 (m, 32 H, Ar-H); IR (KBr, cm⁻¹): v_{max} 3411-3174 (OH), 1627 (C=N), 1613 (C=C); HRMS: m/z [M + H]⁺ calcd: 761.1916, found 761.1919; Anal. Calc. for C₄₈H₃₃N₄O: C, 75.69; H, 4.37; N, 7.36%. Found: C, 75.72; H, 4.9; N, 7.30%.

4-Hydroxy-3,5-bis(1,4,5-triphenyl-1*H*-imidazol-2-yl)benzoic acid (11c)

Yield 96%; yellow solid; mp = 382–385 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.99 (s, 2H, Ar-H), 7.57 (d, *J* = 7.7 Hz, 6H, Ar-H), 7.36-7.20 (m, 17H, Ar-H), 7.12 (d, *J* = 7.6 Hz, 4H, Ar-H), 7.03 (d, *J* = 7.7 Hz, 3H, Ar-H); ¹³C NMR (101 MHz,

DMSO-d₆): δ 167.8, 157.4, 145.7, 138.4, 136.9, 134.2, 131.1, 130.1, 129.1, 129.0, 128.5, 128.3, 128.2, 128.0, 127.3, 126.7, 123.7, 121.7; IR (KBr, cm⁻¹): v_{max} 3211-3054 (OH), 1612 (C=N), 1589 (C=C); HRMS: *m*/*z* [M - H]⁺ calcd: 725.2554, found 725.2551; Anal. Calc. for C₄₉H₃₄N₄O₃: C, 80.97; H, 4.72; N, 7.71%. Found: C, 80.91; H, 4.66; N, 7.68%.

1,4-bis(1,4,5-Triphenyl-1*H*-imidazol-2-yl)benzene (11d)

Yield 96%; yellow solid; mp = 380–383 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.59 (d, J = 9.3 Hz, 4H, Ar-H), 7.39-7.02 (m, 30H, Ar-H); IR (KBr, cm⁻¹): v_{max} 1649 (C=N), 1617 (C=C); HRMS: m/z [M + Na]⁺ calcd: 689.2682, found 689.2679; Anal. Calc. for C₄₈H₃₄N₄: C, 86.46; H, 5.14; N, 8.40%. Found: C, 86.51; H, 5.09; N, 8.35%.

2,2'-(1*H*-Pyrazole-3,5-diyl)bis(1,4,5-triphenyl-1*H*-imidazole) (11e)

Yield 94%; yellow solid; mp > 400 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.61 (d, J = 7.6 Hz, 4H, Ar-H), 7.30-7.08 (m, 26H, Ar-H), 6.66 (s, 1H); IR (KBr, cm⁻¹): v_{max} 3214-3199 (NH), 1617 (C=N), 1580 (C=C); HRMS: m/z [M + H]⁺ calcd: 657.2768, found 657.2765; Anal. Calc. for C₄₅H₃₂N₆: C, 82.29; H, 4.91; N, 12.80%. Found: C, 82.22; H, 4.98; N, 12.75%.

4,4'-Methylenebis(2-(1,4,5-triphenyl-1*H*-imidazol-2-yl)phenol) (11f)

Yield 94%; yellow solid; mp > 400 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.90 (d, J = 8.5 Hz, 4H, Ar-H), 7.53-7.17 (m, 28H, Ar-H), 6.84 (d, J = 8.5 Hz, 4H, Ar-H), 3.82 (s, 2H, CH₂); IR (KBr, cm⁻¹): v_{max} 3322-3086 (NH), 1633 (C=N), 1603 (C=C); HRMS: m/z [M + H]⁺ calcd: 789.3228, found 789.3231; Anal. Calc. for C₅₅H₄₀N₄O₂: C, 83.73; H, 5.11; N, 7.10%. Found: C, 83.67; H, 5.19; N, 7.06%.

References

- 1. A.O. Eseola, O. Adepitan, H. Gorls and Wi. Plass, *New J. Chem.*, 2012, **36**, 891–902.
- 2. A. Hariharasubramanian and Y. D. Ravichandran, *RSC Adv.*, 2014, **4**, 54740–54746.

¹H NMR spectrum of IL 3a

¹H NMR spectrum of IL 3b

¹H NMR spectrum of IL 3c

¹H NMR spectrum of compound 10b

¹H NMR spectrum of compound 10c

¹H NMR spectrum of compound 10e

¹H NMR spectrum of compound 10f

¹H NMR spectrum of compound 11a

¹H NMR spectrum of compound 11b

¹H NMR spectrum of compound 11c

7,6000 7,5763 7,3904 7,3566 7,3158 7,3158 7,3158 7,3158 7,2951 7,2951 7,2201 7,2201 7,1200 7,1100

¹H NMR spectrum of compound 11d

¹H NMR spectrum of compound 11e

¹H NMR spectrum of compound 11f