Flowery nickel-cobalt hydroxide via a solid-liquid sulphur ions grafting route and its application in hybrid supercapacitive storage

Lin Ye, ‡ Zepei Bao, ‡ Yuguang Zhao and and Lijun Zhao*

Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China E-mail: lijunzhao@jlu.edu.cn

Electrochemical Calculations

The loading mass of positive and negative electrodes should meet the requirement of charge balance, as shown in Equation (1):

$$m_{+}/m_{-}=Cs_{-}V_{-}/(Cs_{+}V_{+})$$
 (1)

wherein m, Cs and V are the mass loadings (g), specific capacitance (F g^{-1}) and potential window (V), and + and – are corresponding to the positive and negative electrodes.

The specific capacitance (Cs, F g^{-1}), energy density (E, Wh kg^{-1}) and power density (P, W kg^{-1}) values of the individual electrode or ASC were calculated according to the Equations as follow:

$$Cs = I\Delta t / (mV)$$
(2)

$$E=1/2CsV^2$$
(3)

$$P = E/\Delta t \tag{4}$$

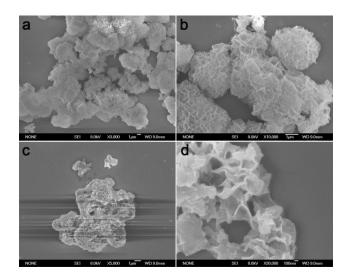


Fig. S1 FESEM figures for different samples: (a, b) Ni1Co2 precursor; (c, d) Ni1Co2-

S.

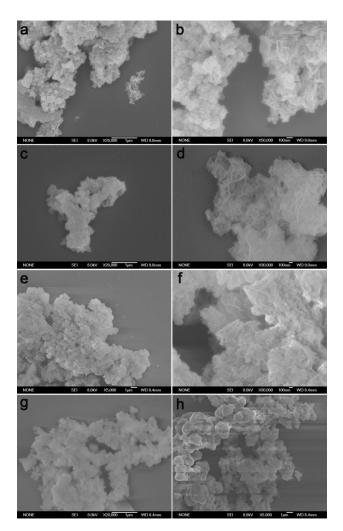


Fig. S2 FESEM figures for different comparisons: (a, b) Ni1Co2-AN; (c, d) Ni2Co1;

(e, f) Co3 and (g, h) Ni3.

Table S1. ICP-OES measurement results of Ni1Co2, Ni1Co2-AN, Ni2Co1, Co3, Ni3

	average Ni	average Co	mass ratio	atomic ratio
	concentration	concentration	Ni/Co	Ni/Co
	(mg L ⁻¹)	(mg L ⁻¹)		
Ni1Co2	0.4523	1.0317	1:2.28	1:2.27
Ni1Co2-AN	0.2697	0.6115	1:2.27	1:1.26
Ni2Co1	1.3533	0.7296	1.85:1	1.86:1
Co3	-0.0035 (ignore)	2.249	0:3	0:3
Ni3	2.766	-0.0017 (ignore)	3:0	3:0
Ni1Co2-S	0.1864	0.4179	1:2.24	1:2.23

and Ni1Co2-S samples.



Fig. S3 Optical image of Ni1Co2 and Ni1Co2-S

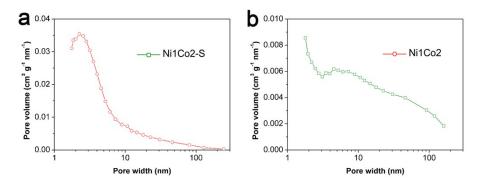


Fig. S4 Pore width distribution of (a) Ni1Co2 and (b) Ni1Co2-S

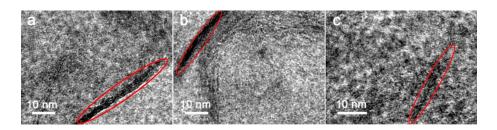


Fig. S5 HRTEM figures of Ni1Co2-S at differnt areas

The nanosheet thickness for Fig. S5a-c is ca. 2-5 nm, also indicative of ultrathin structure of Ni1Co2-S nanosheets.

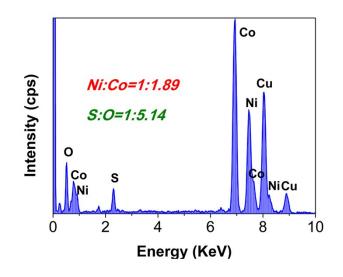


Fig. S6 EDS spectrum of Ni1Co2-S.

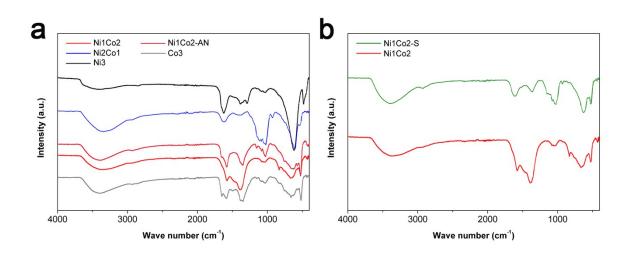


Fig. S7 (a) FTIR patterns of Ni1Co2, Ni1Co2-AN, Ni2Co1, Co3 and Ni3 samples; (b)

FTIR patterns of Ni1Co2 and Ni1Co2-S samples.

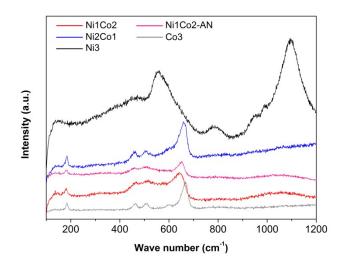
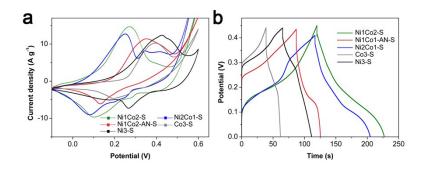



Fig. S8 Raman patterns of Ni1Co2, Ni1Co2-AN, Ni2Co1, Co3 and Ni3 samples.

Herein, the cumulative number of Raman measurement is 8 times for every samples.

Fig. S9 (a) CV curves of Ni1Co2-S, Ni1Co2-AN-S, Ni2Co1-S, Co3-S and Ni3-S electrodes at 5 mV s⁻¹, (b) GCD curves of Ni1Co2-S, Ni1Co2-AN-S, Ni2Co1-S, Co3-S and Ni3-S electrodes at 5 A g⁻¹.

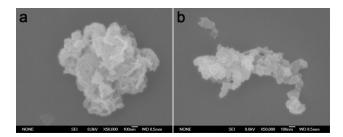


Fig. S10 (a and b) The FESEM figures of Ni1Co2-S electrode after 6000 cycles at 10

A g⁻¹.