Supporting information

Lavender-like cobalt hydroxide nanoflakes deposited on nickel

nanowire arrays for high-performance supercapacitors

Jie Liao,^a Xuanyu Wang,^a Yang Wang,^a Songyang Su,^a Adeela Nairan,^a Feiyu Kang,^{a, b} and Cheng Yang*^a

^aDivision of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.

^bSchool of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Corresponding Author: yang.cheng@sz.tsinghua.edu.cn

Figure S1. Nitrogen adsorption-desorption isotherm of the NFCOH sample, the inset showing the poresize distribution.

Figure S2. X-ray photon spectrum of O1s of the NNA@Co(OH)₂ sample.

Figure S3. SEM image of the pristine nickel nanowire arrays.

Figure S4. SEM image of nickel foam@Co(OH)₂ at different magnifications.

Figure S5. Cyclic voltammetry of the NNA@Co(OH)₂ electrode and NNA at the current density of 5 mV s^{-1} .

Figure S6. Cyclic voltammetry of the NF@Co(OH)₂ electrode and pure nickel foam at the current density of 5 mV s⁻¹.

Figure S7. Cyclic voltammetry plot of the activated carbon electrode at the scan rate from 5 to 100 mV s⁻¹.

Figure S8. Galvanostatic charge/discharge curves of: a) a single asymmetric supercapacitor (ASC) and two ASCs in parallel, and b) a single ASC and two ASCs in tandem.

Ref	Morphology	Capacitance at current density	Cycling stability	Energy density at Power density
This work	Co(OH) ₂ nanosheets on nickel nanowire	891.2 F/g at 1 A/g, 721 F/g at 50 A/g.	89.3% after 20,000 cycles	23.1 Wh kg ⁻¹ at 712 W kg ⁻¹ , 13.5 Wh kg ⁻¹ at 14.7 kW kg ⁻¹ .
1	Co(OH) ₂ nanowires	358 F/g at 0.5 A/g, 325 F/g at 10 A/g.	86.3% after 5,000 cycles	13.6 Wh kg ⁻¹ at 153 W kg ⁻¹ , 13.1 Wh kg ⁻¹ at 1.88 kW kg ⁻¹ .
2	Co(OH) ₂ arrays on carbon nanotube foam	614 C/g at 0.5 A/g, 425 C/g at 10 A/g.	none	13.3 Wh kg ⁻¹ at 612 W kg ⁻¹ , 6.1 Wh kg ⁻¹ at 7.2 kW kg ⁻¹ .
3	Flower-like Co(OH) ₂	429 F/g at 1 A/g, 337 F/g at 10 A/g.	>80% after 4,000 cycles	22 Wh kg ⁻¹ , 9 Wh kg ⁻¹ at 15.9 kW kg ⁻¹ .
4	Co(OH) ₂ /graph ene	693.8 F/g at 2 A/g, 506.2 F/g at 32 A/g.	91.9% after 3,000 cycles	19.3 Wh kg ⁻¹ at 187.5 W kg ⁻¹ , 16.7 Wh kg ⁻¹ at 3,000 W kg ⁻¹ .
5	Co(OH) ₂ nanosheets	604 F/g at 5 mV/s, 454 F/g at 50 mV/s.	76% after 500 cycles	none
6	Co(OH) ₂ sheets	885 F/g at 1 A/g, 699 F/g at 10 A/g.	91% after 1,500 cycles	none
7	Co(OH) ₂ nanocone	562 F/g at 2 A/g, 377 F/g at 32 A/g.	97% after 5,000 cycles	none
8	Co@Co(OH) ₂ core-shell structure	525 F/g at 0.5 A/g, 396 F/g at 2 A/g.	81.5% after 3,000 cycles	none
9	Graphene/Co(OH) ₂	474 F/g at 1 A/g, 300 F/g at 10 A/g.	90% after 1,000 cycles	none
10	Co(OH) ₂ on nickel foam	3.17 F/cm ² at 5 mA/cm ² .	303% after 2,000 cycles	none
11	Co(OH) ₂ nanowires	1.44 F/cm ² at 1 mA/cm ² , 0.99 F/cm ² at 10 mA/cm ² .	93.6% after 5,000 cycles	none

Table S1. Electrochemical performances of $Co(OH)_2$ based electrodes from recent reports.

References:

- 1. Y. Tang, Y. Liu, S. Yu, S. Mu, S. Xiao, Y. Zhao and F. Gao, *J. Power Sources*, 2014, **256**, 160-169.
- C. Wang, H. Qu, T. Peng, K. Mei, Y. Qiu, Y. Lu, Y. Luo and B. Yu, *Electrochim. Acta*, 2016, 191, 133-141.
- 3. R. Wang, X. Yan, J. Lang, Z. Zheng and P. Zhang, J. Mater. Chem. A, 2014, 2, 12724-12732.
- 4. C. Zhao, F. Ren, X. Xue, W. Zheng, X. Wang and L. Chang, *J. Electroanal. Chem.*, 2016, **782**, 98-102.
- 5. T. Zhao, H. Jiang and J. Ma, J. Power Sources, 2011, 196, 860-864.
- 6. P. Dai, T. Yan, L. Hu, Z. Pang, Z. Bao, M. Wu, G. Li, J. Fang and Z. Peng, J. Mater. Chem. A, 2017, 5, 19203-19209.
- 7. F. Cao, G. X. Pan, P. S. Tang and H. F. Chen, J. Power Sources, 2012, 216, 395-399.
- 8. Y. K. Kim, S. I. Cha and S. H. Hong, J. Mater. Chem. A, 2013, 1, 9802.
- Z. Li, J. Wang, L. Niu, J. Sun, P. Gong, W. Hong, L. Ma and S. Yang, J. Power Sources, 2014, 245, 224-231.
- 10. Z. Yu, Z. Cheng, X. Wang, S. X. Dou and X. Kong, J. Mater. Chem. A, 2017, 5, 7968-7978.
- 11. D. Yu, Y. Wang, L. Zhang, Z.-X. Low, X. Zhang, F. Chen, Y. Feng and H. Wang, *Nano Energy*, 2014, **10**, 153-162.