Electronic Supplementary Information for

Stoichiometric analysis of competing intermolecular hydrogen bonds using infrared spectroscopy

Ian Seungwan Ryu, ${ }^{\dagger \mathrm{a}}$ Xiaohui Liu, ${ }^{\dagger \mathrm{b}}$ Ying Jin, ${ }^{\text {a }}$ Jirun Sun, ${ }^{* b}$ Young Jong Lee ${ }^{* a}$
${ }^{\text {a }}$ Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
${ }^{\mathrm{b}}$ Volpe Research Center, American Dental Association Foundation, Gaithersburg, Maryland, 20899, USA
\dagger These authors contributed equally to this work.
* Corresponding authors: J.S. (jsun@nist.gov) and Y.J.L. (yjlee@nist.gov)

Contents:

1. Derivation of stoichiometric equation (Eq. 8) for $(1+1)$ model
2. Derivation of stoichiometric equation (Eq. 16) for $(2+1)$ model

1. Derivation of stoichiometric equation (Eq. 8) for (1+1) model

$$
\begin{gather*}
K_{\mathrm{U}}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{[\mathrm{H}]\left[\mathrm{O}_{\mathrm{U}}\right]} \tag{S1}\\
K_{\mathrm{T}}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]}{[\mathrm{H}]\left[\mathrm{O}_{\mathrm{T}}\right]} \tag{S2}\\
P \equiv K_{\mathrm{U}} / K_{\mathrm{T}} \tag{S3}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]+\left[\mathrm{O}_{\mathrm{U}}\right]=4[\mathrm{U}]} \tag{S4}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]+\left[\mathrm{O}_{\mathrm{T}}\right]=4[\mathrm{~T}]} \tag{S5}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]=2[\mathrm{U}]} \tag{S6}
\end{gather*}
$$

To simplify the equations above, we introduce the fractions of $\mathrm{C}=\mathrm{O}$ groups satisfying $\Phi+\varphi=1$.

$$
\begin{gather*}
\Phi \equiv \frac{\left[\mathrm{O}_{\mathrm{U}}\right]}{\left[\mathrm{O}_{\mathrm{U}}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}=\frac{\left[\mathrm{O}_{\mathrm{U}}\right]}{4[\mathrm{U}]} \tag{S7}\\
\varphi \equiv \frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{\left[\mathrm{O}_{\mathrm{U}}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{4[\mathrm{U}]} \tag{S8}
\end{gather*}
$$

Also, the mole fraction of UDMA is defined as described in the main text.

$$
\begin{equation*}
\phi_{\mathrm{U}}=\frac{[\mathrm{U}]}{[\mathrm{U}]+[\mathrm{T}]} \tag{S9}
\end{equation*}
$$

Substracting Eq. S6 from S5,

$$
\begin{equation*}
\left[\mathrm{O}_{\mathrm{T}}\right]=4[\mathrm{~T}]-2[\mathrm{U}]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right] \tag{S10}
\end{equation*}
$$

Utilizing Eqs. S7-S10, Eq. S3 can be expressed as following

$$
\begin{align*}
& P=\frac{K_{\mathrm{U}}}{K_{\mathrm{T}}}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{\left[\mathrm{O}_{\mathrm{U}}\right]} \frac{\left[\mathrm{O}_{\mathrm{T}}\right]}{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]} \\
&=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{\left[\mathrm{O}_{\mathrm{U}}\right]} \frac{4[\mathrm{~T}]-2[\mathrm{U}]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{2[\mathrm{U}]-\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]} \\
&=\frac{1-\Phi}{\Phi} \frac{4\left(1-\phi_{\mathrm{U}}\right)}{\phi_{\mathrm{U}}}+2-4 \Phi \tag{S11}\\
&-2+4 \Phi
\end{align*}
$$

Eq. S11 can be rearranged to the following quadratic equation with respect to Φ, and its solution is Eq. 8 in the main text.

$$
2(P-1) \Phi^{2}+\left(-P+1+\frac{2}{\phi_{\mathrm{U}}}\right) \Phi+\left(1-\frac{2}{\phi_{\mathrm{U}}}\right)=0
$$

2. Derivation of stoichiometric equation (Eq. 16) for (2+1) model

$$
\begin{gather*}
K_{\mathrm{U} 1}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]}{[\mathrm{H}]\left[\mathrm{O}_{\mathrm{U} 1}\right]} \tag{S12}\\
K_{\mathrm{U} 2}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 2}\right]}{[\mathrm{H}]\left[\mathrm{O}_{\mathrm{U} 2}\right]} \tag{S13}\\
K_{\mathrm{T}}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]}{[\mathrm{H}]\left[\mathrm{O}_{\mathrm{T}}\right]} \tag{S14}\\
Q \equiv K_{\mathrm{U} 2} / K_{\mathrm{U} 1} \quad R \equiv K_{\mathrm{U} 1} / K_{\mathrm{T}} \tag{S15}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]+\left[\mathrm{O}_{\mathrm{U} 1}\right]=4[\mathrm{U}]} \tag{S16}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 2}\right]+\left[\mathrm{O}_{\mathrm{U} 2}\right]=4[\mathrm{U}]} \tag{S17}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]+\left[\mathrm{O}_{\mathrm{T}}\right]=4[\mathrm{~T}]} \tag{S18}\\
{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 2}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]=2[\mathrm{U}]} \tag{S19}
\end{gather*}
$$

Similar to Eqs. S7 and S8, we introduce the fractions of $\mathrm{C}=\mathrm{O}$ groups satisfying $\Phi+\varphi=1$.

$$
\begin{equation*}
\Phi \equiv \frac{\left[\mathrm{O}_{\mathrm{U} 1}\right]}{\left[\mathrm{O}_{\mathrm{U} 1}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]}=\frac{\left[\mathrm{O}_{\mathrm{U} 1}\right]}{4[\mathrm{U}]} \quad \varphi \equiv \frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]}{\left[\mathrm{O}_{\mathrm{U} 1}\right]+\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]}=\frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U}}\right]}{4[\mathrm{U}]} \tag{S20}
\end{equation*}
$$

From the definition of $Q \equiv K_{\mathrm{U} 2} / K_{\mathrm{U} 1}$ and Eq. S17 and S20

$$
\begin{gather*}
Q \frac{\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]\left[\mathrm{O}_{\mathrm{U} 2}\right]}{\left[\mathrm{O}_{\mathrm{U} 1}\right]}+\left[\mathrm{O}_{\mathrm{U} 2}\right]=4[\mathrm{U}] \\
{\left[\mathrm{O}_{\mathrm{U} 2}\right]=4[\mathrm{U}]\left(\frac{\left[\mathrm{0}_{\mathrm{U} 1}\right]}{Q\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]+\left[\mathrm{O}_{\mathrm{U} 1}\right]}\right)} \\
\quad=4[\mathrm{U}]\left(\frac{\Phi}{Q-Q \Phi+\Phi}\right) \tag{S21}
\end{gather*}
$$

From Eqs. S17-S21,

$$
\begin{align*}
{\left[\mathrm{O}_{\mathrm{T}}\right] } & =\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]-\left[\mathrm{O}_{\mathrm{U} 2}\right]+2[\mathrm{U}]+4[\mathrm{~T}] \\
& =4[\mathrm{U}](1-\Phi)-4[\mathrm{U}]\left(\frac{\Phi}{Q-Q \Phi+\Phi}\right)+2[\mathrm{U}]+4[\mathrm{~T}] \tag{S22}
\end{align*}
$$

The definition of $R \equiv K_{\mathrm{U} 1} / K_{\mathrm{T}}$ can be rearranged into the following Eq. S23

$$
\begin{equation*}
R\left[\mathrm{O}_{\mathrm{U} 1}\right]\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{T}}\right]=\left[\mathrm{H} \cdots \mathrm{O}_{\mathrm{U} 1}\right]\left[\mathrm{O}_{\mathrm{T}}\right] \tag{S23}
\end{equation*}
$$

Utilizing Eqs. S18, S20-S22 into Eq. S23 and rearranging the resultant Eq. S23 with respect to the mole fraction of UDMA (Eq. S9) lead to Eq. 16 in the main text.

$$
\phi_{\mathrm{U}}=\frac{2 Q \Phi^{2}-2 \Phi^{2}-4 Q \Phi+2 \Phi+2 Q}{2(-R Q+R+Q-1) \Phi^{3}+(5 R Q-R-5 Q+1) \Phi^{2}+(-3 R Q+4 Q+1) \Phi-Q}
$$

