Supporting information In Situ Synthesis of Metal Embedded Nitrogen doped Carbon Nanotubes as an Electrocatalyst for oxygen reduction reaction with High Activity and Stability

Fig-S1. a) SEM image of Co-freeP, b) SEM image of Co-NCP.

Fig-S2. a) SEM image of Co-free, b) SEM image of Co-NC.

Figure S3. IR atlas of Co-freeP and Co-NCP.

Figure 4S—a) XPS survey of Co-MA, b) the deconvoluted high-resolution C1s

spectrum of Co-MA, c) the deconvoluted high-resolution Co2p spectrum of Co-MA, d) the deconvoluted high-resolution N1s spectrum of Co-MA.

Sample	Pyridinic N	Graphitic N	Quaternary-N ⁺ O	- Co-N _x				
Co-NC	48.1%	43.1%	6.9%	1.9%				
Co-MA	10%	72.3%	17.7%	\sim				
<u></u>								
Table 1—The content of different N species in Co-NC and CoMA								
Sample		0.0	4 D '					
		Surfac	ce Area Pore size	Pore Volume				
		(m ²	² g ⁻¹) (nm)	$(cm^3 g^{-1})$				
	Co-NC	110	6.57 207.30	0.83				
	Co-MA	11:	5.95 134.23	0.44				

Table 2—Comparison of surface area and pore structure of Co-NC and Co-MA materials.

Sample	E ₀ (V vs. Ag/AgCl)	E _{1/2} (V vs. Ag/AgCl)	J _{limit} (mA cm ⁻²)	n	Ref.
Co-NC	-0.13	-0.19	5.44	4	This work
Co-MA	-0.17	-0.25	4.63	3.5	This work
Co@Co3O4@C-CM	-0.04	-0.16	4.55	3.8-3.9	[1]
Fe-N-C	-0.02	-0.19	3.55	3.6-3.9	[2]
Ag/NC	-0.12	-0.20	5.20	3.98	[3]
Co@NSCNTs	-0.07	-0.17	4.90	3.94	[4]
Co-NHPC		-0.13	5.20	3.87	[5]
Pt/C	-0.01	0.10	4.88	3.9	This work

Table 3—Some of M/N/C catalysts and Pt/C ORR activity summary

REFRENCE

- 1 W. Xia, R. Zou, L. An, D. Xia and S. Guo, Energy & Environmental Science, 2015, 8, 568-576.
- 2 P. Sivakumar, P. Subramanian, T. Maiyalagan, N. Perkas, A. Gedanken and A. Schechter, Journal of The Electrochemical Society, 2017, 164, F781-F789.
- 3 Y. Wang, Y. Qiao, Y. Chen, T. Hu and L. Zhang, International Journal of Hydrogen Energy, 2017, 42, 22903-22908.

4 L. Zhong, Y. Hu, L. N. Cleemann, C. Pan, J. Sværke, J. O. Jensen and Q. Li, International Journal of Hydrogen Energy, 2017, 42, 22887-22896.

5 M. Dou, D. He, W. Shao, H. Liu, F. Wang and L. Dai, Chemistry, 2016, 22, 2896-2901