Supporting Information

Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO₂ bilayered electron transport layers Caifeng Zhang,^{a,b}Guangmei Zhai,^{a,b,b} Yong Zhang,^{a,b,c} Wenhui Gao,^{a,b} Zhimeng Shao,^{a,b} Lulu Zheng,^{a,b} Fuhong Mei,^{a,b} Hua Zhang,^{a,b, Y}ongzhen Yang,^{a,b} Xuemin Li,^{a,b} Xuguang Liu,^{a,b,c} and Bingshe Xu^{a,b} a.Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Research Centre of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China. E-mail: zhaiguangmei@tyut.edu.cn (G. Zhai); zhanghua01@tyut.edu.cn (H. Zhang) b.CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China c.Collaborative Innovation Centre for Advanced Thin-film Optoelectronic Materials and Devices in Shanxi Province, Taiyuan, Shanxi 030024, China d.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

Fig. S1 Grazing Incidence X-ray diffraction (GIXRD) patterns of different electron transport layers deposited on glass.

Fig. S2 Zn 2p and Ti 2p XPS spectra of (a) a ZnO NP-film, (b)(c)a ZnO NPs/TiO₂ bilayered film, (d) a ZnO sol-gel film, and (e) (f) a ZnO sol-gel/TiO₂ bilayered film. (Note: a small amount of Zn can be still detected on the surface of the ZnO/TiO₂ bilayer, indicating that TiO₂ does not completely cover the ZnO films probably due to the rough surface of FTO.)

Fig. S3 FTIR spectra of a ZnO NP-film and a ZnO sol-gel film.

Fig. S4 The cross-sectional SEM image of a PSC device with the structure of

glass/FTO/ ZnO/TiO₂ /CH₃NH₃PbI₃/Spiro-OMeTAD/Au.

Fig. S5 J-V curves of perovskite solar cells fabricated (a) on a ZnO NP-film and a ZnO NPs/TiO₂ bilayered film; (b) on a ZnO sol-gel film and a ZnO sol-gel/TiO₂ bilayered film under reverse and forward scans.

Table S1 Photovoltaic parameters of different devices under reverse and forward scans.

	V_{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
ZnO NPs-PSC Reverse	0.98	9.94	36.50	3.56
ZnO NPs-PSC Forward	0.22	2.91	17.84	0.11
ZnO NPs/TiO ₂ -PSC Reverse	1.06	19.14	73.89	15.0
ZnO NPs/TiO ₂ -PSC Forward	1.00	18.01	34.65	6.24
ZnO sol-gel-PSC Reverse	1.08	15.90	52.58	9.03
ZnO sol-gel-PSC Forward	0.84	10.23	27.73	2.38
ZnO sol-gel/TiO ₂ -PSC Reverse	1.08	18.11	74.38	14.55
ZnO sol-gel/TiO ₂ -PSC Forward	1.04	15.91	36.29	6.01

a ZnO sol-gel film and a ZnO sol-gel/TiO₂ bilayer film.

Fig. S7 J-V curves of the ZnO-NP and ZnO sol-gel films with the device structure of

ITO/ZnO/Au in dark.

Conductivity measurement: In order to obtain electrical conductivities of the ZnO NP-film and ZnO sol-gel film, we meausured *J-V* curves of devices with the structure of ITO/ZnO/Au. The obtained *J-V* curves are shown in Fig. S7 in the supporting information. Their conductivities were further calculated out via the following formula.

$$\sigma = \frac{l}{RS}$$

where σ is conductivity (S/m), *I* film thickness (m), *R* film resistance (Ω), and *S* film area (m²).

The calculated conductivities of the ZnO NP-film and ZnO sol-gel film are 7.7×10⁻⁴

S/m and 4.4×10^{-4} S/m, respectively.

Fig. S8 Absorbance spectra of perovskite films deposited on a ZnO NP-film and a ZnO

sol-gel film.

Fig. S9 Typical *J-V* curve of the perovskite solar cell based on a low-temperature TiO₂ electron transport layer.