Electronic Supplementary Information

A novel near-infrared fluorescent probe for highly selective recognition of hydrogen sulfide and imaging in living cells

Keli Zhong^{a, b}, Longlong Deng,^a Jie Zhao^a, , Xiaomei Yan^c, Tong Sun^{* b}, Jianrong Li^{*} ^b, and Lijun Tang^{* a}

^a College of Chemistry and Chemical Engineering, Bohai University, Jinzhou, 121013, China

^b College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, 121013, China

^c College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, China

* Corresponding author. Fax: 86-416-3400158; Tel: 86-416-3400302; E-mail: jzsuntong@sina.com (T. Sun), lijr6491@163.com (J. Li) and ljtang@bhu.edu.cn (L. Tang)

Contents

Figure	S1. ¹ H NM	IR spect	rum of compo	ound L in	DMSO	- <i>d</i> _{6.}			S3
Figure	S2. ¹³ C NI	MR spec	trum of comp	ound L in	DMSC	D- <i>d</i> ₆			S3
Figure	S3. HRMS	S spectru	m of compou	nd L in C	H ₃ CN.				S4
Figure	S4. Fluore	escence c	hanges of var	ious anioi	ns adde	d to probe	L		S4
Figure	S5. UV–vi	is absorp	tion of variou	is anions a	added to	o L		•••••	S4
Figure	S6.	The	detection	limit	of	probe	L	to	HS-
Figure	S7. The se	electivity	and anti-inter	rference o	f L for	S_2^2 -and p -	toluene	ethiol	S5
Figure	S8. Fluore	scence s	pectra of L, L	∠+HS ⁻ and	compo	ound 1			. S5
Table S	1. Compa	rison of]	L with other r	reported fl	uoresce	ence probe	S		S6
Figure	S9. HRMS	S of 1 and	d the reaction	mixture o	of L wit	th HS			S7
Figure	S10. Cell	viability	values estima	ited by M	ГТ assa	y in MCF	-7 cells		S7
Scheme	e S1. Synth	nesis rou	te of L						S8
Figure	S11. ¹ H N	MR spec	etrum of comp	oound 6 in		3			S9
Figure	S12. ¹ H N	MR spec	etrum of comp	bound 5 in		3			S10
Figure	S13. ¹ H N	MR spec	etrum of comp	oound 4 in		3			S11
Figure	S14. ¹ H N	MR spec	etrum of comp	bound 3 in	DMSC	D- <i>d</i> ₆			S12
Figure	S15. ¹ H N	MR spec	trum of comp	bound 2 in	CDCl	3			S13
Figure	S16. ¹ H N	MR spec	etrum of comp	oound 1 in	DMSC	D- <i>d</i> ₆			S13
Figure	S17. ¹³ C N	JMR spe	ctrum of com	pound 1 i	n DMS	0-			

Figure S1. ¹H NMR spectrum of compound L in DMSO-*d*₆.

Figure S18. HRMS spectrum of compound 1 in CH₃CN......S14

Figure S3. HRMS spectrum of compound L in CH_3CN ([M+H]⁺ calcd: 571.1751, found: 571.1802).

Figure S4. Fluorescence changes of various anions added to probe L, 1: HS⁻, 2: F⁻, 3: Cl⁻, 4: Br⁻, 5: I⁻, 6: NO₂⁻, 7: CO₃²⁻, 8: HCO₃⁻, 9: CH₃COO⁻, 10: HPO₄²⁻, 11: H₂PO₄⁻, 12: PO₄³⁻, 13: CN⁻, 14: SCN⁻, 15: PPi, 16: ClO⁻, 17: SO₄²⁻, 18: SO₃²⁻, 19: HSO₃⁻, 20: HSO₄⁻, 21: N₃⁻, 22: S₂O₃²⁻, 23: Hcy, 24: GSH, 25: Cys.

Figure S5. UV–vis absorption spectra of probe L on addition of various anions in THF/Tris (6/4, v/v, pH = 7.4) solution.

Figure S6. The detection limit of probe L to HS⁻.

Figure S7. The selectivity a) and anti-interference b) of L for S_2^{2-} and *p*-toluenethiol.

Figure S8. Fluorescence spectra of L, L+HS⁻ and compound 1.

No	Molecular structure	λ _{ex}	λ _{em}	Stokes	Response	Literature	
110.		/nm	/nm	shift /nm	time/min		
1	O_2N O_2N N O_2N	450	514	~64	50	RSC Adv., 2013, 3, 25690-25693	
2		450	550	~100	20	Dyes Pigm., 2013, 99, 537-542	
3		450	550	105	20	Org. Lett., 2013, 15, 2310-2313	
4	NO ₂ N ₂ S NO ₂ NO ₂	460	497	37	25	Sens. Actuators, B, 2014, 196, 151- 155	
5	O_2N	450	525	75	40	Chin. Chem. Lett., 2014, 25, 1060- 1064	
6		530	655	125	20	Sens. Actuators, B, 2014, 202: 99-104	
7	O_2N O_2 O	410	514	104	40	Anal. Chim. Acta, 2015, 853, 548- 554	
8	$O_2N \xrightarrow{O} O_2 O_2 O_2 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1$	418	541	~123	30	Dyes Pigm., 2015, 118, 88-94	
9	O_2N NO_2 O_2	318	463	78	60	Anal.Methods, 2015, 7, 7646- 7652	
10		370	424	~54	150	Sens. Actuators, B, 2016, 232, 705- 711	
11		360	504	~144	30	Anal.Methods, 2016, 8, 6832- 6839	
12	O ₂ N O ₂ N O ₂ N	574	592	18	20	Talanta, 2018, 181, 104-111	
13	($N $ $V $ $N $ $N $ $N $ $N $ $N $ N	500	650	125	18	This work	

Table S1. Comparison of the proposed probe with other reported fluorescence probesfor the detection of H_2S .

Figure S9. HRMS of compound 1 (above) and the reaction mixture of L with HS-(below).

Figure S10. Cell viability values (%) estimated by MTT assay in MCF-7 cells, which were cultured in the presence of different concentrations of probe L (1.0, 5.0, 10, 20, and 40 μ M).

Scheme S1. Synthesis route of L.

Synthesis

The synthesis of compound 7

4-Methoxy-2-nitroaniline (20 g, 0.12 mol), stannous chloride (72 g, 0.6 mol) were dissolved in dry methanol (200 mL), then the mixture was refluxed for 12 h. After cooling, methanol was removed under reduced pressure. The mixture was washed with saturated NaHCO₃ and NaCl solution, and extracted with ethyl acetate. The organic layer was dried with anhydrous Na₂SO₄ and concentrated in rotavapour. The crude product **7** is oily liquid (15.2 g) and be used directly for next step without purification.

The synthesis of compound 6

Compound 7 (15.2 g, 0.11 mol), glyoxal (40%, 49 mL, 4.0 mol) were added into in dry acetonitrile (100 mL), then the mixture was stirred at 60 °C for 12 h and cooled. The solvent was removed in a rotary evaporator and the crude product was purified by column chromatography with petroleum ether/ethyl acetate (10:1, v/v) as eluent to give white solid compound **6** (15.9 g, 89.7%). ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 2.0 Hz, 1H), 8.68 (d, J = 2.0 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.41 (dd, J = 9.2, 2.8 Hz, 1H), 7.36 (d, J = 2.8 Hz, 1H), 3.96 (s, 3H).

Figure S11. ¹H NMR spectrum of compound 6 in CDCl₃.

The synthesis of compound 5

Compound **6** (15.9 g, 0.1 mol) was dissolved in dry toluene (200 mL), then sodium borohydride (38 g, 1.0 mol) was added into toluene over a period of 30 min at 0-5 °C. The obtained pale yellow slurry was stirred for 10 min, and then glacial acetic acid (57.3 mL, 60 g, 1.0 mol) was added dropwise over a period of 1 h at 5–10 °C. The brown slurry was stirred for another 1 h at 10 °C, and then heated to reflux for 5 h. After cooling, water (250 mL) was added, and the toluene layer was separated, then aqueous layer was extracted with ethyl acetate (3×100 mL). Combined extracts and toluene layer were washed repeatedly with dilute Na₂CO₃ and water, dried over anhydrous sodium sulphate, filtered and vacuum evaporated. The obtained dark brown oil was purified by column chromatography with petroleum ether/ethyl acetate (10:1, v/v) as eluent to give golden yellow oil compound **5** (13.4 g, 70%) ¹H NMR (400 MHz, CDCl₃) δ 6.57 (d, *J*=8.4 Hz, 1H), 6.24-6.29 (m, 2H), 3.81 (s, 3H), 3. 31 – 3.40 (m, 8H), 1.22 (t, J=7.2 Hz, 6H).

Figure S12. ¹H NMR spectrum of compound 5 in CDCl₃.

The synthesis of compound 4

Phosphorus oxychloride (8.9 mL, 0.1 mol) was added into dimethyl formamide (DMF, 30 mL) under stirring at 0 °C. After 15 minutes, compound **5** (13.4 g, 0.07 mol) diluted by 20 mL DMF was added into the cooled reagent with stirring. The mixture was heated at 75 °C for 6 h and then poured into icewater. The clear solution was neutralized by cold sodium hydroxide solution (15%) maintaining 10~15 °C. Combined organic layers were washed by water, dried over anhydrous sodium sulphate, filtered and vacuum evaporated. The brown sticky crude products were purified by column chromatography with petroleum ether/ethyl acetate (3:1, v/v) as eluent to give compound **4** (10.8 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 6.94 (s, 1H), 5.98 (s, 1H), 3.80 (s, 3H), 3.43-3.50(m, 2H), 3.37 (q, *J* = 7.1 Hz, 2H), 3.26 (q, *J* = 7.1 Hz, 2H), 3.07- 3.14 (m, 2H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).

Figure S13. ¹H NMR spectrum of compound 4 in CDCl₃.

The synthesis of compound 3

Aluminum powder (1.68 g, 0.06 mol) was dissolved in 30 mL acetonitrile, iodine (18.0 g, 0.14 mol) was added into the slurry by small portions and stirred under nitrogen atmosphere untill the colour changed to yellow. Compound **4** (10.8 g, 0.05 mol) diluted by 5 mL MeCN was added to the slurry dropwise. The mixture was then gently refluxed for 10 h, cooling and slowly poured into cold water (100 mL). The mixture was extracted with ethyl acetate (4×100 mL). Combined organic layers were washed by water, dried over anhydrous Na₂SO₄ and vacuum evaporated. The pale yellow oil products were purified by column chromatography with dichloromethane/ petroleum ether (1:1, v/v) as eluent to give compound **3** (7.7 g, 76%) ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.97 (s, 1H), 9.55 (s, 1H), 6.59 (s, 1H), 5.96 (s, 1H), 3.44 (t, 2H), 3.33 (q, *J* = 7.0 Hz, 2H), 3.18 (q, *J* = 7.0 Hz, 2H), 3.04 (t, 2H), 1.04 (t, *J* = 7.2 Hz, 3H).

Figure S14. ¹H NMR spectrum of compound 3 in DMSO- d_6 .

Figure S16. ¹H NMR spectrum of compound 1 in DMSO-*d*₆.

Figure S18. HRMS spectrum of compound 1 in CH_3CN ([M-H]⁺ calcd: 403.1736, found: 403.1658).