Electronic Supplementary Material

Robust colorimetric detection based on anti-aggregation of gold nanoparticles for bromide in rice samples

Siwat Paisen,^{a,b} Wilairat Cheewasedtham,^b and Thitima Rujiralai^{*a,b}

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand. E-mail: thitima.r@psu.ac.th.

^bAnalytical Chemistry and Environment Research Unit, Division of Chemistry, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000, Thailand.

Section 2.2 The concentration of AuNPs was calculated as follows, with the spectrum of 2.5-folds diluted AuNPs solution (Fig. S1).

Fig. S1 UV-Vis absorption spectrum of AuNPs solution that is 2.5-folds diluted.

A = εbc

 $c = \frac{0.5961}{1 \times 2.70 \times 10^8}$

c = 2.2078 nM

Thus, the initial concentration of AuNPs is equal to 5.52 nM (2.2078 × 2.5-folds dilution)

Where A is the absorbance of AuNPs solution.

 ϵ is the extinction coefficient of AuNPs at 520 nm which is equal to 2.70×10^8 M⁻¹ cm⁻¹ [23]. b is cell pathlength that is equal 1 cm.

c is the concentration of gold nanoparticles.

[23] D. Liu, Z. Wang and X. Jiang, *Nanoscale*, 2011, **3**, 1421–1433.

The stability of gold nanoparticles after several days for detection of bromide ion was investigated. The AuNPs was synthesized, stored in the dark at 4 °C and used for detection of 2.50 μ M Br⁻ standard within 4 months. The sensitivity of Br⁻ detection represented as the absorbance ratio of A₅₁₉/A₆₇₃ was recorded (Fig. S2). We measured the absorbance response of Br⁻ detection in total of 8 times during 4 months. As shown in Fig. S2, the sensitivity remained stable and no significant difference of the absorbance ratio between 8 measurements in 4 months (*P*>0.05). Thus, it was proved that the stability of AuNPs after several days for Br⁻ detection can be last at least 4 months.

Fig. S2 The absorbance ratio (A_{519}/A_{673}) of 2.50 μ M Br⁻ after using the synthesized AuNPs suspension stored in the dark at 4 °C in 4 months.

Fig. S3 Zeta potential of AuNPs at pH 6.5 in the presence of 0.63, 2.50 and 4.38 μ M Br⁻.

Fig. S4 UV-Vis absorption spectra of (a) AuNPs, (b) AuNPs+50 μ M Cr³⁺, (c) AuNPs+50 μ M Fe³⁺ and (d) AuNPs+50 μ M Al³⁺ prepared in 10 mM phosphate buffer (pH 7.0). Inset is the corresponding photograph of a-d.

Fig. S5 Effect of pH of phosphate buffer on aggregation of AuNPs in the presence of Cr³⁺, Fe³⁺ and Al³⁺.

Fig. S6 (A) The effect of pH of phosphate buffer on the linearity curve of Br⁻ concentration ranged from 0.62–5.01 μ M and (B) the corresponding solution color at each pH.

Fig. S7 The effect of phosphate buffer concentration (pH 6.5) (a) Analyte signal (0.25 μ M Br⁻) and (b) Blank signal (no Br⁻).

Fig. S8 (A) The effect of concentration of AuNPs on the linearity curve of Br⁻ concentration ranged from 0.63–2.50 μ M and (B) the corresponding solution color at each AuNPs.

Fig. S9 Effect of 5 M of I⁻ and SCN⁻ on selectivity of the detection of 5 M Br⁻.

Fig. S10 XRF spectra of sample solutions spiked with (a) 50, (b) 100, (c) 200 and (d) 400 M Br⁻.

Table S1 Comparison of metals detected in rice sample which prepared by different digestion method followed by inductively coupled plasma-optical emission spectrometry (ICP-OES) (n = 3)

Metal	Sample 1 (mg kg ⁻¹) ^a	Sample 2 (mg kg ⁻¹) ^b	Sample 3 (mg kg ⁻¹) ^c
Al	0.0016 ± 0.0001	0.0028 ± 0.0000	1.0808 ± 0.0228
Са	0.0068 ± 0.0001	0.0067 ± 0.0002	25.4417 ± 0.4185
Cr	0.0005 ± 0.0000	0.0003 ± 0.0000	0.0211 ± 0.0000
Cu	Not detected	Not detected	0.2564 ± 0.0077
Fe	Not detected	Not detected	0.6846 ± 0.0033
К	13.0542 ± 0.0520	13.5542 ± 0.0764	90.5528 ± 6.2761
Mg	0.0455 ± 0.00012	0.0547 ± 0.0007	24.9431 ± 0.3996
Mn	Not detected	Not detected	1.1388 ± 0.0203
Ni	Not detected	Not detected	0.0266 ± 0.0009
Р	1.0049 ± 0.0147	0.9815 ± 0.0113	192.3577 ± 3.2884
Se	0.0002 ± 0.0000	0.0002 ± 0.0001	0.3111 ± 0.0156
Zn	Not detected	Not detected	2.3366 ± 0.0235

^arice sample (2.0 g) prepared by digesting with 1% potassium hydroxide in 50% ethanol and ashing for 4 h. ^brice sample (2.0 g) prepared by digesting with 1% potassium hydroxide in 50% ethanol and ashing for 8 h. ^crice sample (1.2 g) prepared by acidic digesting with hydrogen peroxide and hydrochloric acid.