Supporting Information

Bin Wang, ^{a,b} ChunYing Wei ^{a*}

^{*a*} Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006,P. R China. E-mail: weichuny@sxu.edu.cn

^b School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001,P. R.
China. Tel:(+)86-351-7010699;

Contents

S-I Tables

S-II Figures

S-I Tables and figures

Table S1 Detailed absorption (λ_a) and emission peak (λ_f) positions of *o***N-TPA** in the different solvents

	$\Delta f(\varepsilon,n)$	oN-TPA		
solvents		λ_a (nm)	$\lambda_{\rm f}$ (nm)	$v_{\rm a}$ - $v_{\rm f}$ (cm ⁻¹)
Hexane	0.0012	370	474	6.0×10 ³
Toluene	0.014	381	503	6.3×10 ³
Butyl ether	0.096	370	499	7.0×10^{3}
Isopropyl ether	0.145	373	513	7.3×10 ³
Ethyl ether	0.167	368	524	8.09×10 ³
Ethyl acetate	0.200	375	561	8.9×10 ³
Tetrahydrofuran	0.210	376	569	9.0×10 ³
Dichloromethane	0.217	379	605	9.9×10 ³
Dimethyl formamide	0.276	381	638	10.5×10 ³
Acetonitrile	0.305	376	650	11.2×10 ³

Figure S1 ¹H NMR of *o*N-TPA in DMSO

Figure S2 UV-vis absorption spectra of *o***N-TPA** measured in the different solvents with the increasing orientational polarizability (Δf). *n*-Hexane: 0.0012; toluene: 0.014; butyl ether: 0.096; isopropyl ether (IPE): 0.145; ethyl ether: 0.167; ethyl acetate (EA): 0.200; tetrahydrofuran (THF): 0.210; dimethyl formamide (DMF); and acetonitrile: 0.305.

Figure S3 UV-vis absorption spectra of 10 μ M *o*N-TPA in THF alone (0 %) and THF-water mixture with water fractions from 10 % to 90 % (v/v).

Figure S4 PL spectra change of 10 μ M *o*N-TPA with the increasing water fraction from 0 to 1.0% (v/v)in THF (excitation at 410 nm, slit width 3).

Fig.S5 Absorption spectra of 10 μ M *o*N-TPA after adding the different concentration of TFA to tune the pH values of solution in THF-water mixtures with f_w =90%.

Fig. S6 Powder X-ray diffraction patterns of samples *o*N-TPA in the different states;

Fig. S7 the DSC curves (heating and cooling) of oN-TPA ground powders under a nitrogen atmosphere with heating and cooling rate of 10 °C min⁻¹

Fig. S8 fluorescence photographs of the Dye (*o***N-TPA**, 5% wt/wt)-doped polymers (**PMMA**) film under different hydrostatic pressure (from compression to decompression).