Electronic Supplemental Information (ESI)

Iron-doped ZnO as Support for Pt-based Catalysts to Improve Activity and Stability: Enhancement of Metal–Support Interaction by the Doping Effect

Si Bui Trung Tran^a, Han Seul Choi^{a,b}, Sun Young Oh^{a,b}, Song Yi Moon^{a,b}, Jeong Young Park^{*,a,b}

^a Center for Nanomaterials and Chemical Reactions, Institute of Basic Science (IBS), Daejeon 305-701, Republic of Korea

^b Graduate School of EEWS and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea

* E-mail: jeongypark@kaist.ac.kr

Fig. S1 Photograph of the samples.

Fig. S2 (left) SEM image and (right) corresponding EDS mapping of the Pt/4%FeZnO sample.

Fig. S3 XPS spectra of (a) Fe 2p and (b) Zn 2p core levels for the catalysts Pt/ZnO, Pt/1%FeZnO, and Pt/4%FeZnO.

Fig. S4 TEM images of the (a) Pt/ZnO, (b) Pt/1%FeZnO, and (c) Pt/4%FeZnO samples collected after the CO oxidation reaction and their corresponding particle size distributions