Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

## **Supporting Information**

Self-template Synthesis of Highly Efficient Hollow Structure Fe/N/C

Electrocatalysts for Oxygen Reduction Reaction

YueYu,<sup>a</sup> DejianXiao,<sup>a</sup> JunMa,<sup>a</sup> ChangliChen,<sup>a</sup> KaiLi,<sup>a</sup> JieMa,<sup>a</sup> YiLiao,<sup>a</sup> LirongZheng,<sup>b</sup> Xia Zuo<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China

<sup>b</sup>Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of

Sciences, Beijing 100049, P. R. China

\*Corresponding author. Tel.: +86-10-68903086; Fax: +86-10-68903040.

E-mail addresses: zuoxia@cnu.edu.cn (X. Zuo)



Figure S1. TEM images of MF



Figure S2. TEM images of PDA@MF-Fe-800



Figure S3. SEM images of Fe/N/C



**Figure S4.** Raman spectra recorded with (A) Fe/N/C; (B) PDA@MF-Fe-800; (C) PDA@MF-800; (D) MF-800.



Figure S5. XPS spectra of Fe/N/C, PDA@MF-Fe-800, PDA@MF-800 and MF-800



Figure S6. XPS spectra in the N 1s of (A) MF-800; (B) PDA@MF-800



**Figure S7.** LSV curves of (A)PDA@MF-Fe-800; (B) PDA@MF-800; (C) MF-800 in O<sub>2</sub> saturated 0.1 M KOH aqueous solution at a rotation rate from 400-1600 rpm



**Figure S8.** Cyclic voltammograms in the region without faradaic processes of (A) Fe/N/C; (B) PDA@MF-Fe-800.

Table S1. The BET surface the catalysts

|                |         | MF-800 | MF@PDA-800 | PDA@MF-Fe-800 | Fe/N/C  |
|----------------|---------|--------|------------|---------------|---------|
| BET            | surface | 620.61 | 671.96     | 858.03        | 1146.75 |
| $(m^2 g^{-1})$ | )       |        |            |               |         |

Table S2. The atomic contents of different elements measured by XPS.

| Sample        | C 1s (%) | N 1s (%) | O 1s (%) | Fe 2p (%) |
|---------------|----------|----------|----------|-----------|
| MF-800        | 89.27    | 4.25     | 6.45     | 0         |
| PDA@MF-800    | 86.41    | 6.5      | 7.09     | 0         |
| PDA@MF-Fe-800 | 85.92    | 6.13     | 7.58     | 0.37      |
| Fe/N/C        | 85.02    | 6.71     | 7.34     | 0.52      |

**Table S3.** The ORR performance of the catalysts.

| Sample        | Onset      | Half-wave  | Diffusion-limiting | Electron   |
|---------------|------------|------------|--------------------|------------|
|               | potential  | potential  | current density    | transfer   |
|               | (V vs RHE) | (V vs RHE) | $(mA cm^{-2})$     | numbers(n) |
| Pt/C          | 0.97       | 0.82       | 5.47               | 4          |
| Fe/N/C        | 0.94       | 0.84       | 4.92               | 3.96       |
| PDA@MF-Fe-800 | 0.95       | 0.82       | 4.73               | 3.69       |
| PDA@MF-800    | 0.92       | 0.76       | 4.25               | 3.41       |
| MF-800        | 0.86       | 0.67       | 3.47               | 3.51       |

| Catalysts                             | Onset potential<br>(V vs RHE) | Half-wave potential<br>(V vs RHE) | Reference |
|---------------------------------------|-------------------------------|-----------------------------------|-----------|
| Fe-N/C-800                            | 0.92                          | 0.81                              | [1]       |
| (N-Fe-co-doped carbon black)          | 0.94                          | 0.81                              | [2]       |
| NPCA-900                              | 0.93                          | 0.80                              | [3]       |
| Fe-g-C <sub>3</sub> N <sub>4</sub> @C | 0.88                          | 0.75                              | [4]       |
| FeNP-C                                | 0.90                          | 0.72                              | [5]       |
| Fe/N/C                                | 0.94                          | 0.84                              | This work |

**Table S4.** Comparison of ORR performance for Fe/N/C with the other Fe and N doped catalysts

## References

- 1. L. Lin, Q. Zhu and A. W. Xu, *Journal of the American Chemical Society*, 2014, **136**, 11027-11033.
- 2. J. Liu, X. Sun, P. Song, Y. Zhang, W. Xing and W. Xu, *Advanced Materials*, 2013, **25**, 6879-6883.
- 3. Q. L. Zhu, W. Xia, L. R. Zheng, R. Zou, Z. Liu and Q. Xu, Acs Energy Letters, 2017, **2**, 504-511.
- 4. M. Q. Wang, W. H. Yang, H. H. Wang, C. Chen, Z. Y. Zhou and S. G. Sun, *Acs Catalysis*, 2014, **4**, 3928-3936.
- 5. H. Yang, J. Zhu, Q. Lv, C. Liu, Q. Li and X. Wei, *Electrochimica Acta*, 2015, **155**, 335-340.