Supporting Information

Wearable triboelectric nanogenerator based on a hybridized

triboelectric modes for harvesting mechanical energy

Yu Qiu^{1,3,*}, Dechao Yang^{2,*}, Bing Li¹, Shuai Shao¹, Lizhong Hu^{1,3}

¹School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People's Republic of China

²Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian, 116024, People's Republic of China

³The Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, People's Republic of China

*Corresponding author: e-mail: yuqiu@dlut.edu.cn

No output signal of CS-TENG generated when the W-fabric slides only inside G-fabric area because there is no polarization generated in this case.

Fig.S1 Output voltage of CS-TENG when top W-fabric slides only inside G-fabric.

Fig. S2 Influence of frequency on the output performance of both FS-TENG and CS-TENG fabrics. (a-d) The open circuit voltage (Voc) and short circuit current (Isc) of FS-TENG in both sliding and contactseparation modes under three different frequency. (e-h) The open circuit voltage (Voc) and short circuit current (Isc) of CS-TENG in both sliding and contact-separation modes under three different frequency.