Supporting Information for

Synergetic photoluminescence enhancement of monolayer MoS₂

via surface plasmon resonance and defect repairing

Yi Zeng¹, Weibing Chen², Bin Tang^{1, 3}, Jianhui Liao^{1, *}, Jun Lou^{2, *} and Qing Chen^{1, 3, *}

 ¹Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
²Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
³Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

Keywords: monolayer MoS₂, photoluminescence enhancement, surface plasmon resonance, defect repairing

Contents

Figure S1: Absorption spectrum of Au NPs and FDTD simulation.

Figure S2: Local electric field distribution of Au NPs by FDTD simulations.

Figure S3: Raman spectrum of a CVD-grown MoS2 monolayer;

Figure S4: SEM image of TFSI treated MoS₂ on Au NPs.

Figure S5: Pump-power dependence of the PL intensity for pristine MoS_2 and TFSI treated MoS_2 on Au NPs.

Figure S6: PL spectra of MoS₂ on Au NPs, TFSI treated MoS₂ and TFSI treated MoS₂ on Au NPs.

Figure S7: The statistics of peak position and FWHM of A excitons and A- trions.

*Corresponding emails: jianhui.liao@pku.edu.cn, jlou@rice.edu, qingchen@pku.edu.cn

Figure S1. Absorption spectra of 10nm-Au NPs. The resonance wavelength of 10nm-Au NPs is about 520 nm, which is very close to the laser wavelength used in our experiments, 532 nm.

Figure S2. Local electric field distribution of Au NPs by FDTD simulations.

Figure S3. Raman spectrum of a CVD-grown MoS_2 monolayer. The differential between the E^{1}_{2g} peak and the A_{1g} peak is 20.4 cm⁻¹, which confirms a single layer MoS_2 .

Figure S4. SEM image of TFSI treated MoS₂ on Au NPs. (a) SEM image of TFSI treated MoS₂ on Au NPs. (b) The magnified SEM image of the white region in panel (a). The boundary of MoS₂ membrane was indicated by a white dash line.

Figure S5. Pump-power dependence of the PL intensity for pristine MoS₂ and TFSI treated MoS₂ on Au NPs. For contrast, the pump-power dependence of the PL intensity of MoS₂ was enlarged 100 times.

Figure S6: PL spectra of MoS₂ on Au NPs, TFSI treated MoS₂ and TFSI treated MoS₂ on Au NPs with fitting curves. (a) PL spectra of MoS₂ on Au NPs. (b) PL spectra of TFSI treated MoS₂. (c) PL spectra of TFSI treated MoS₂ on Au NPs. The PL spectra from B excitons are so weak and we could ignore them.

Figure S7: The statistics of peak position and FWHM of A excitons and A- trions from the fitting curves. (a) Peak positions of A excitons and A- trions. (b) FWHM of PL spectra of A excitonos and A- trions.