Supporting Information

Cu-MOF: An Efficient Heterogeneous Catalyst for the Synthesis of Symmetric Anhydrides *via* C-H Bond Activation of Aldehydes

Zahra Ahmadzadeh,^a Javad Mokhtari,*^a and Morteza Rouhani ^a

^a Department of Chemistry, Science and Research Branch. Islamic Azad University, P.O. Box 14515/775, Tehran, Iran. Corresponding author e-mail address: j.mokhtari@srbiau.ac.ir

Selected Spectra Data:

Benzoic anhydride (**2a**): yield = 82%; Liquid, ¹H NMR (300 MHz, CDCl₃): δ 7.46-7.51 (m, 4H, CH of Ar), 7.60-7.65 (m, 2H, CH of Ar), 8.13 (d, 4H, 3J = 7.86 Hz). Anal. Calcd. for C₁₄H₁₀O₃ (226.23): C, 74.33; H, 4.46. Found: C, 74.35; H, 4.47.

4-Nitrobenzoic anhydride (**2g**): yield = 68%; mp: 188-190°C, ¹H NMR (300 MHz, CDCl₃): δ 8.14 (d, 4H, 3J = 8.9 Hz, CH of Ar), 8.26 (d, 4H, ³J = 8.9 Hz, CH of Ar). Anal. Calcd. for C₁₄H₈N₂O₇ (316.23): C, 53.18; H, 2.55; N, 8.86%. Found: C, 53.21; H, 2.58; N, 8.87%.

4-hydroxy-3-methoxybenzoic anhydride (**2l**): yield = 73%; ¹H NMR (300 MHz, CDCl₃): δ 3.98 (s, 6H, MeO), 6.17 (bs, 2H, OH), 7.05 (d, 2H, ³J = 8.4 Hz, CH of Ar), 7.43-7.45 (m, 4H, CH of Ar). Anal. Calcd. for C₁₆H₁₄O₇ (318.28): C, 60.38; H, 4.43. Found: C, 60.4; H, 4.46.

4-hydroxybenzoic anhydride (**2k**): yield = 70%; ¹H NMR (300 MHz, CDCl₃): δ 5.6 (bs, 2H, OH), 6.95 (d, 4H, ³J = 8.6 Hz, CH of Ar), 7.82 (d, 4H, ³J = 8.6 Hz, CH of Ar). Anal. Calcd. for C₁₄H₁₀O₅ (258.23): C, 65.12; H, 3.90. Found: C, 65.15; H, 3.94.

Isotherm Linear Plot

Figure S1. The N₂ adsorption-desorption isotherms of Cu₂(BDC)₂(DABCO)

Figure S2. MP-Plot of the synthesized Cu₂(BDC)₂(DABCO)

Figure S3. FE-SEM images of fresh Cu₂(BDC)₂DABCO (left) and FE-SEM images of recycled Cu₂(BDC)₂DABCO (right)

Figure S4. (left) TEM image of fresh Cu₂(BDC)₂(DABCO). (Right) TEM image of recycled Cu₂(BDC)₂(DABCO)

Figure S5. (a) FT-IR of fresh Cu₂(BDC)₂(DABCO) (b) recycled Cu₂(BDC)₂(DABCO)

Figure S6. TGA spectra of Cu₂(BDC)₂(DABCO)

Figure S7. ¹H-NMR of Benzoic anhydride

Figure S8. ¹H-NMR of 4-nitrobenzoic anhydride

Figure S9. ¹H-NMR of 4-hydroxy-3-methoxybenzoic anhydride

Figure S10. ¹H-NMR of 4-hydroxybenzoic anhydride