Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Factorial Design Analysis of Parameters for Sorption Enhanced Steam Reforming of Ethanol in a Circulating Fluidized Bed Riser using CFD

Fig. S1. The main effects (a) and the interactions (b and c) on the H_2 flux.

Fig. S2. The main effects (a) and the interactions (b and c) on the H_2 purity.

Table S1Conservation equations used in the simulations.

a) Mass conservation for each phase q:

$$\frac{\partial}{\partial t} (\varepsilon_{q} \rho_{q}) + \nabla \cdot (\varepsilon_{q} \rho_{q} \vec{v}_{q}) = \sum_{p=1}^{n} (\dot{m}_{pq} - \dot{m}_{qp}) + S_{m,q}$$
(S1)

b) Momentum conservation

- for gas phase:

$$\frac{\partial}{\partial t} \left(\varepsilon_{g} \rho_{g} \vec{v}_{g} \right) + \nabla \cdot \left(\varepsilon_{g} \rho_{g} \vec{v}_{g} \vec{v}_{g} \right) = -\varepsilon_{g} \nabla p + \nabla \cdot \vec{\tau}_{g} + \varepsilon_{g} \rho_{g} \vec{g} + \sum_{s=1}^{n} \left(K_{sg} \left(\vec{v}_{s} - \vec{v}_{g} \right) + \dot{m}_{sg} \vec{v}_{sg} - \dot{n} \right)$$
- for solid phase:

$$\frac{\partial}{\partial t} \left(\varepsilon_{s} \rho_{s} \vec{v}_{s} \right) + \nabla \cdot \left(\varepsilon_{s} \rho_{s} \vec{v}_{s} \vec{v}_{s} \right) = -\varepsilon_{s} \nabla p - \nabla p_{s} + \nabla \cdot \vec{\tau}_{s} + \varepsilon_{s} \rho_{s} \vec{g} + \sum_{l=1}^{n} \left(K_{ls} \left(\vec{v}_{l} - \vec{v}_{s} \right) + \dot{m}_{ls} \vec{v}_{ls} - \right) \right)$$
(S3)

c) Energy conservation

- for gas phase:

$$\frac{\partial}{\partial t} \left(\epsilon_{g} \rho_{g} H_{g} \right) + \nabla \cdot \left(\epsilon_{g} \rho_{g} \vec{v}_{g} H_{g} \right) = \epsilon_{g} \frac{\partial p_{g}}{\partial t} + \vec{\tau}_{g} : \nabla \vec{v}_{g} - \nabla \cdot \vec{q}_{g} + S_{h,g} + \sum_{s=1}^{n} \left(Q_{sg} + \dot{m}_{sg} h_{sg} - \dot{m}_{g} \right)$$
(S4)

- kinetic fluctuation energy conservation for solid phase:

$$\frac{3}{2} \left[\frac{\partial}{\partial t} \left(\epsilon_{s} \rho_{s} \Theta_{s} \right) + \nabla \cdot \left(\epsilon_{s} \rho_{s} \vec{v}_{s} \Theta_{s} \right) \right] = \left(-p_{s} \vec{I} + \vec{\tau}_{s} \right) : \nabla \vec{v}_{s} + \nabla \cdot \left(k_{\Theta_{s}} \nabla \Theta_{s} \right) - \gamma_{\Theta_{s}} + \phi_{ls}$$
(S5)

where $\gamma_{\Theta_{sis}}$ is collisional dissipation of energy (Lun *et al.* [S1]):

$$\gamma_{\Theta_{s}} = \frac{12(1 - e_{ss}^{2})g_{0,ss}}{d_{s}\sqrt{\pi}}\rho_{s}\varepsilon_{s}^{2}\Theta_{s}^{3/2}$$
(S6)

and ϕ_{ls} is kinetic energy exchange between phase l and solid phase:

$$\phi_{ls} = -3K_{ls}\Theta_{s} \tag{S7}$$

d) <u>Chemical species conservation</u> of the species k in phase q:

$$\frac{\partial}{\partial t} \left(\epsilon^{q} \rho^{q} Y_{k}^{q} \right) + \nabla \cdot \left(\epsilon^{q} \rho^{q} \vec{v}^{q} Y_{k}^{q} \right) = -\nabla \cdot \left(\epsilon^{q} \vec{J}_{k}^{q} \right) + \epsilon^{q} R_{k}^{q} + \epsilon^{q} S_{k}^{q} + \sum_{p=1}^{n} \left(\dot{m}_{p}^{k} \vec{v}_{q}^{k} - \dot{m}_{q}^{k} \vec{v}_{p}^{k} \right)$$
(S8)

Table S2Constitutive equations used in the simulations.

a) Stress tensor for each phase q:

$$\bar{\tau}_{q} = \varepsilon_{q} \mu_{q} \left(\nabla \vec{v}_{q} + \nabla \vec{v}_{q}^{T} \right) + \varepsilon_{q} \left(\lambda_{q} - \frac{2}{3} \mu_{q} \right) \nabla \cdot \vec{v}_{q} \bar{I}$$
(S9)

b) Solid shear viscosity:

$$\mu_{\rm s} = \mu_{\rm s,col} + \mu_{\rm s,kin} + \mu_{\rm s,fr} \tag{S10}$$

where $\mu_{s,col}$ is the collisional viscosity:

$$\mu_{s,col} = \frac{4}{5} \varepsilon_{s} \rho_{s} d_{s} g_{0,ss} \left(1 + e_{ss}\right) \left(\frac{\Theta_{s}}{\pi}\right)^{1/2} \varepsilon_{s}$$
(S11)

and $\mu_{s,kin}$ is the kinetic viscosity (Gidaspow *et al.* [S1]):

$$\mu_{s,kin} = \frac{10\rho_{s}d_{s}\sqrt{\Theta_{s}\pi}}{96\varepsilon_{s}(1+e_{ss})g_{0,ss}} \left[1 + \frac{4}{5}\varepsilon_{s}g_{0,ss}(1+e_{ss})\right]^{2}\varepsilon_{s}$$
(S12)

c) Solid bulk viscosity (Lun et al. [S1]):

$$\lambda_{\rm s} = \frac{4}{3} \varepsilon_{\rm s}^2 \rho_{\rm s} d_{\rm s} g_{0,\rm ss} \left(1 + e_{\rm ss}\right) \left(\frac{\Theta_{\rm s}}{\pi}\right)^{1/2}$$
(S13)

d) Solid Pressure (Lun et al. [S1]):

$$p_{s} = \varepsilon_{s} \rho_{s} \Theta_{s} + 2\varepsilon_{s}^{2} \rho_{s} \Theta_{s} g_{0,ss} (1 + e_{ss})$$
(S14)

e) Radial distribution coefficient

- for one solid phase (Lun et al. [S1]):

$$g_{0,ss} = \left[1 - \left(\frac{\varepsilon_s}{\varepsilon_{s,max}}\right)^{1/3}\right]^{-1}$$
(S15)

- the mutual radial distribution coefficient between two solid phases:

$$g_{0,ls} = \frac{d_s g_{0,ll} + d_l g_{0,ss}}{d_s + d_l}$$
(S16)

f) Granular temperature from KTGF:

$$\frac{3\partial}{2\partial t} (\varepsilon_{s} \rho_{s} \Theta_{s}) = (-p_{s} \overline{I} + \overline{\tau}_{s}) : \nabla \widetilde{V}_{s} - \gamma_{\Theta_{s}} + \phi_{ls}$$
(S17)

g) Gas-solid momentum exchange coefficient using Gidaspow's drag model [S1]

- for
$${}^{\varepsilon}g > 0.8$$
:

$$K_{sg} = \frac{3}{4} C_{D} \frac{\varepsilon_{s} \varepsilon_{g} \rho_{g} |\vec{v}_{s} - \vec{v}_{g}|}{d_{s}} \varepsilon_{g} - 2.65$$
(S18)

where C_D is drag coefficient:

$$C_{\rm D} = \frac{24}{\varepsilon_{\rm g} {\rm Re}_{\rm s}} \left[1 + 0.15 (\varepsilon_{\rm g} {\rm Re}_{\rm s})^{0.687} \right]$$

$$- \text{ for } \varepsilon_{\rm g} \leq 0.8:$$
(S19)

$$K_{sg} = 150 \frac{\varepsilon_s (1 - \varepsilon_g) \mu_g}{\varepsilon_g d_s^2} + 1.75 \frac{\rho_g \varepsilon_s |\vec{v}_s - \vec{v}_g|}{d_s}$$
(S20)

h) Solid-solid momentum exchange coefficient:

$$K_{ls} \equiv K_{sl} = \frac{3(1 + e_{ls})\left(\frac{\pi}{2} + C_{fr,ls}\frac{\pi^2}{8}\right) \epsilon_s \rho_s \epsilon_l \rho_l (d_l + d_s)^2 g_{0,ls}}{2\pi \left(\rho_l d_l^3 + \rho_s d_s^3\right)} |\vec{v}_l - \vec{v}_s|$$
(S21)

i) Gas-solid heat exchange coefficient:

$$h_{sg} \equiv h_{gs} = \frac{k_g N u_s}{d_s}$$
(S22)

where Nus is Nusselt number of solid phase (Gunn's model [S1]):

$$Nu_{s} = \left(7 - 10\varepsilon_{g} + 5\varepsilon_{g}^{2}\right)\left(1 + 0.7Re_{s}^{0.2}Pr^{1/3}\right) + \left(1.33 - 2.4\varepsilon_{g} + 1.2\varepsilon_{g}^{2}\right)Re_{s}^{0.7}Pr^{1/3}$$
(S23)

Table S3 The setting of phase and system properties in the simulations.

Phase properties	
Catalyst density [kg/m ³]	2,200
Calcined dolomite density [kg/m ³]	1,540

Mean catalyst particle size [µm]	200
Mean dolomite particle size [µm]	250
MgO content in dolomite [wt %]	40
Inlet granular temperature of solid phases [m ² /s ²]	1x10 ⁵
Packing limit of solid phases	0.60
Restitution coefficient of all phase interactions	0.90
System properties	
Outlet pressure [atm]	1
Wall type	Adiabatic
Shear condition	No slip

 Table S4
 The fixed parameters and the studied parameters of the 2⁵ full factorial design.

Parameters	Low level	High level	
Design parameters			
Gas inlet velocity: U [m/s]	3	4	
Solid flux: G _s [kg/m ² s]	100	200	
Diameter of the riser: id [m]	0.1	0.2	
Height of the riser: H [m]	7 (fixed)		
Reaction parameters			
Catalyst to sorbent ratio: Cat/Sb [kg/kg]	0.58	2.54	
Steam/Ethanol molar ratio: S/E [mol/mol]	6 (fixed)		
Temperature of inlets: T _{in} [°C]	600	700	
CaO conversion of inlet sorbent: $X_{CaO,in}$ [%]	0 (fi	xed)	

Factor:	А	В	С	D	Е	R1	R2	
Run	id	T _{in}	Cat/Sb	Gs	U	H ₂ flux	H ₂ purity	X _{CaO}
	[m]	[°C]	[kg/kg]	[kg/m ² s]	[m/s]	[kg/m ² s]	[% dry]	[%]
1	0.1	600	2.54	100	3	0.132795	85.96	2.54
2	0.1	600	2.54	100	4	0.134116	78.85	2.36
3	0.1	600	2.54	200	3	0.142458	89.01	1.47
4	0.1	600	2.54	200	4	0.163118	85.17	1.53
5	0.1	600	0.58	100	3	0.107676	80.88	0.84
6	0.1	600	0.58	100	4	0.095864	72.13	0.71
7	0.1	600	0.58	200	3	0.118917	84.78	0.51
8	0.1	600	0.58	200	4	0.124579	80.10	0.50
9	0.1	700	2.54	100	3	0.122248	89.53	2.84
10	0.1	700	2.54	100	4	0.088973	59.58	0.08
11	0.1	700	2.54	200	3	0.129442	91.93	1.70
12	0.1	700	2.54	200	4	0.150081	87.67	1.88
13	0.1	700	0.58	100	3	0.069700	59.82	0.02
14	0.1	700	0.58	100	4	0.069147	56.47	0.02
15	0.1	700	0.58	200	3	0.110062	87.66	0.62
16	0.1	700	0.58	200	4	0.116549	82.74	0.55
17	0.2	600	2.54	100	3	0.138739	88.94	1.54
18	0.2	600	2.54	100	4	0.162809	85.04	1.64
19	0.2	600	2.54	200	3	0.146765	91.30	0.84
20	0.2	600	2.54	200	4	0.173570	87.57	0.96
21	0.2	600	0.58	100	3	0.119885	84.64	0.52
22	0.2	600	0.58	100	4	0.128142	79.93	0.53
23	0.2	600	0.58	200	3	0.128984	87.32	0.30
24	0.2	600	0.58	200	4	0.142326	82.94	0.32
25	0.2	700	2.54	100	3	0.126764	91.89	1.68
26	0.2	700	2.54	100	4	0.143514	86.29	1.82

Table S5 The area-averaged H_2 flux, H_2 purity and CaO conversion (X_{CaO}) near theoutlet of the riser from parametric study with the 2⁵ factorial design.

27	0.2	700	2.54	200	3	0.133745	94.07	0.95
28	0.2	700	2.54	200	4	0.152288	89.07	1.07
29	0.2	700	0.58	100	3	0.112057	88.65	0.63
30	0.2	700	0.58	100	4	0.115007	81.31	0.60
31	0.2	700	0.58	200	3	0.121366	91.26	0.38
32	0.2	700	0.58	200	4	0.132704	86.25	0.41

Table S6The results of the ANOVA of the H_2 flux.

Source	Sum of	Degree of	Mean	F-value	P-value
	squares	freedom	square		
		(DF)			
C (Cat/Sb)	0.005737	1	0.005737	79.93976	< 0.0001
$D(G_s)$	0.003190	1	0.003190	44.4568	< 0.0001
A (id)	0.002868	1	0.002868	39.96242	< 0.0001
B (T _{in})	0.002229	1	0.002229	31.06468	< 0.0001
AD	0.000702	1	0.000702	9.77882	0.004733
E (U)	0.000538	1	0.000538	7.493613	0.011736
DE	0.000419	1	0.000419	5.836395	0.024042
AE	0.000399	1	0.000399	5.552999	0.027341
Residual	0.001651	23	7.18E-05		
Cor Total	0.017732	31			

 $\label{eq:Table S7} \textbf{Table S7} \quad \text{The results of the ANOVA of the } H_2 \text{ purity}.$

Source	Sum of squares	Degree of freedom	Mean square	F-value	P-value
		(DF)			
D (G _s)	519.2369	1	519.2369	26.61521	< 0.0001
A (id)	481.9729	1	481.9729	24.70513	< 0.0001
E (U)	354.6858	1	354.6858	18.1806	0.000292
C (Cat/Sb)	281.9324	1	281.9324	14.45138	0.00092
AD	213.7666	1	213.7666	10.95732	0.003054
BD	133.1668	1	133.1668	6.825905	0.015563
AB	122.3844	1	122.3844	6.273218	0.01979
ABD	117.8375	1	117.8375	6.040152	0.021944
Residual	448.7076	23	19.50902		
Cor Total	2673.691	31			

References

[S1] ANSYS Inc., ANSYS Fluent Theory Guide 15.0, SAS IP Inc., USA, 2013.