Electronic Supplementary information:

Surface Engineering-modulated Porous N-doped Rod-like Molybdenum Phosphide Catalysts: towards High Activity and Stability for Hydrogen Evolution Reaction over a Wide pH Range

Liying Chai,^a Wenyu Yuan,^b Xue Cui,^a Haiying Jiang,^a Junwang Tang,^c Xiaohui Guo^{*a}

^a Prof. Dr. Xiaohui Guo, Dr. Yu Qiu, Liying Chai, Xue Cui, Haiying Jiang, Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the College of Chemistry and Materials Science, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China

^b Dr. Wenyu Yuan, Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, 710072, Xi'an, P. R. China.

^c Prof. Junwang Tang, Department of Chemical Engineering, UCL, Torrington Place, London, WC1E 7JE, UK.

Figure S1. FESEM images of (a) Mo_3O_{10}/EDA , (b) MoP, (c) N-MoP-750 and (d) N-MoP-850.

Figure S2. (a, b) TEM images of N-MoP-750; (d, e) TEM images of N-MoP-850; (c) and (f) are HRTEM images of a part of N-MoP-750 in (b) and N-MoP-850 in (f),

respectively.

Figure S3. Element mapping analysis for N-MoP-750 sample, a) HADDF image; b) mapping image of Mo element; c) mapping image of P element; d) mapping image of N element.

Figure S4. Element mapping analysis for N-MoP-850 sample, a) HADDF image; b) mapping image of Mo element; c) mapping image of P element; d) mapping image of N element.

Figure S5. High resolution XPS spectra of (a) Mo 3d, (b) P 2p and (c) N 1s for N-MoP-750 sample.

Figure S6. High resolution XPS spectra of (a) Mo 3d, (b) P 2p and (c) N 1s for N-MoP-850 sample.

Figure S7. (a) XPS survey spectrum of MoP. (b) EDS pattern of MoP.

Figure S8. CV curves for (a) N-MoP-750; (b) N-MoP-800 and (c) N-MoP-850 at different rates from 10 to 100 mV s⁻¹ in 1 M KOH; (d) the relationship curve between capacitive current and scan rate for N-MoP-750, N-MoP-800 and N-MoP-850 at 0.2 V ($\Delta j=j_a-j_c$).

Table S1. Comparison of HER performance of N-MoP with previously reported MoP

 based electrocatalysts in acid and basic media

Catalyst	Onset	η (mV)	Tafer	Electrolyte	Def
Catalyst		(at 10)	Slope	Electrolyte	Rel.
	(mv)	mA/cm ²)	(mv/dec)	solution	
N-doped MoP nanorod	65	136 (10)	58.66	0.5 M H ₂ SO ₄	This
	68	145 (10)	71.15	1M KOH	work
MoP@NC	80	135 (10)	57	0.5 M H ₂ SO ₄	1
MoP NPs	_	225(10)	65	0.5 M H ₂ SO ₄	2
	_	276(10)	105	1.0 M KOH	
P-MoP	60	191 (10)	56	0.5 M H ₂ SO ₄	3
MoP-graphite nanosheets	320	460 (10)			
	(VS	(VS	63	$0.5 \text{ M H}_2\text{SO}_4$	4
	Ag/AgCl)	Ag/AgCl)			
Electrochemically activated MoP	80	150 (10)	50	$0.5 \text{ M H}_2\text{SO}_4$	
		190 (10)	—	1.0 M KOH	5
MoP	100	246 (10)	60	0.5 M H ₂ SO ₄	6
MoS $_{2(1-x)}$ P $_x$	—	150 (10)	57	0.5 M H ₂ SO ₄	7
TPC-MoPs	65	126(10)	68.5	$0.5 \text{ M H}_2\text{SO}_4$	8
CoMoP	85	215	50	$0.5 \text{ M H}_2\text{SO}_4$	9
rGO-A-MoP	82	152(10)	88	$0.5 \text{ M H}_2\text{SO}_4$	10
	94	162(10)	57	1.0 M KOH	10
MoP/SN	44	104(10)	45.49	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	11
	10	94(10)	59.7	1.0 M KOH	11
MoP/CC	_	148(10)	55	0.5 M H ₂ SO ₄	12
MoP NPs		110(10)	45	0.5 M H ₂ SO ₄	13
MoP-CA2	40	125(10)	54	0.5 M H ₂ SO ₄	14
MoP@PC	48	47(10)	45	$0.5 \text{ M H}_2\text{SO}_4$	15

References:

- 1 S. Gao, Y. P. Liu, G. D. Li, Y. C. Guo, Y. C. Zou, X. X. Zou, *Electrochim. Acta*, 2016, 199, 99-107.
- 2 H. J. Yan, Y. Q. Jiao, A. P. Wu, C. G. Tian, X. M. Zhang, L. Wang, Z. Y. Ren, H. G. Fu, *Chem. Commun.*, 2016, 52, 9530-9533.
- 3 C. Deng, F. Ding, X. Y. Li, Y. F. Guo, W. Ni, H. Yan, K. N. Sun and Y. M. Yan, *J. Mater. Chem. A*, 2016, 4, 59-66.
- 4 S. S. J. Aravind, K. Ramanujachary, A. Mugweru, T. D. Vaden, *Appl. Catal.*, *A*, 2015, 490, 101-107.
- 5 T. Y. Wang, K. Z. Du, W. L. Liu, Z. W. Zhu, Y. H. Shao and M. X. Li, *J. Mater. Chem. A*, 2015, 3, 4368-4373.
- 6 X. B. Chen, D. Z. Wang, Z. P. Wang, P. Zhou, Z. Z. Wu, F. Jiang, Chem. Commun., 2014, 50, 11683-11685.
- 7 R. Q. Ye, P. del. Angel-Vicente, Y. Y. Liu, M. J. Arellano-Jimenez, Z. W. Peng, T. Wang, Y. L. Li, B. I. Yakobson, S. H. Wei, M. J. Yacaman and J. M. Tour, *Adv. Mater.*, 2016, 28, 1427-1432.
- 8 Z. Q. Yao, Y. Z. Su, C. B. Lu, C. Q. Yang, Z. X. Xu, J. H. Zhu, X. D. Zhuang and F. Zhang, *New J. Chem.*, 2016, 40, 6015-6021.
- 9 D. Z. Wang, X. Y. Zhang, D. Z. Zhang, Y. L. Shen and Z. Z. Wu, Appl. Catal., A, 2016, 511, 11-15.
- 10 K. Ojha, M. Sharma, H. Kolev and A. K. Ganguli, *Catal. Sci. Technol.*, 2017, 7, 668-676.
- 11 M. A. R. Anjum and J. S. Lee, ACS Catal., 2017, 7, 3030-3038.
- 12 X. D. Wang, Y. F. Xu, H. S. Rao, W. J. Xu, H. Y. Chen, W. X. Zhang, D. B. Kuang and C. Y. Su, *Energy Environ. Sci.*, 2016, 9, 1468-1475.
- 13 J. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi, N. S. Lewis and R. E. Schaak, *Chem. Mater.*, 2014, 26, 4826-4831.
- 14 Z. C. Xing, Q. Liu, A. M. Asiri and X. P. Sun, Adv. Mater., 2014, 26, 5702-5707.
- 15 S. Han, Y. L. Feng, F. Zhang, C. Q. Yang, Z. Q. Yao, W. X. Zhao, F. Qiu, L. Y. Yang, Y. F. Yao, X. D. Zhuang and X. L. Feng, *Adv. Funct. Mater.*, 2015, 25, 3899-3906.