Electronic Supplementary Information

Reconstitution properties of biologically active polymersomes after cryogenic freezing and freeze-drying process

Robert Ccorahua^{§a}, Silvia Moreno^{§b}, Hannes Gumz^{bc}, Karin Sahre^b, Brigitte Voit^{*bc}, Dietmar Appelhans^{*b}

^a Department of Mechanical Engineering Pontificia Universidad Católica del Peru, Lima 32, Peru

^b Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany E-Mail: applhans@ipfdd.de; voit@ipfdd.de

^c Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany and Center for Advancing Electronics Dresden, 01062 Dresden, Germany

§ Equal contribution of both authors

*Corresponding author: applhans@ipfdd.de, voit@ipfdd.de

Content of ESI

Experimental			
Additional	l figures and tables	3	
Fig. ESI- 1	Reaction scheme for the preparation of: A) PEG-Br macroinitiator, B) pre- crosslinker and the crosslinker DMIBMA and C) poly(ethyleneglycol) ₄₅ - <i>block</i> - poly(diethylaminoethyl-methacrylate- <i>stat</i> -3,4- dimethylmaleinimidobutylmethacrylate) ₉₉ (PEG ₄₅ - <i>b</i> - P(DEAMA- <i>s</i> -DMIBM) ₉₂).	3	
Fig. ESI- 2:	Swelling-shrinking cycles of pH-responsive polymersomes between pH 5 and pH 8 Psome <i>fresh and</i> Psome <i>frozen</i> storage for different times.	4	
Fig. ESI-3:	Diameter of the reconstituted non-crosslinked Psomes studied by DLS using SM-1 (stored at -20°C for 8 days) and SM-2 (stored at 4°C for 8 days) as storage methods.	4	
Tab.ESI-1	Specifications of Block copolymers synthesized by ATRP.	5	
Tab.ESI-2	Diameter distribution of polymersomes (PS) modified with HSA, investigated as (i) freshly prepared sample, (ii) frozen sample at -20°C for 1 day followed upon gentle thawing to room temperature, and (ii) after freeze-drying and direct redispersion in slightly acidic solution. *The DLS measurements correspond to PS at pH 5.	5	
		5	

References

Experimental

Synthesis of the compounds in order to get the block-copolymer

The first step was to synthesize the required block copolymer (**Figure 1-SI**) having methoxy (**BCP1**) end groups at their hydrophilic poly(ethylene glycol) (PEG) segment by using our previous published approach^{1,2} through atom transfer radical polymerization (ATRP) and identical use of monomer ratio³ for the fabrication of **BCP1**. The hydrophobic part of the block copolymers consists of pH-sensitive 2- (diethylamino)ethyl methacrylate (DEAEM) and photo-crosslinker, 3,4-dimethyl maleic imidoethyl methacrylate (PDMIBM).^{4,5} The composition of **BCP1** was determined by ¹H-NMR and SEC-MALLS. The composition and the number average molecular weight (M_n) of the block copolymer **BCP1** were determined with ¹H NMR spectroscopy from the peak integrals of PEG (3.65 ppm), DEAEMA (2.65-2.78 ppm) and DMIBM (3.52 ppm) by taking the PEG block as an internal standard. Additionally, the molar mass distributions (*Đ*) were determined by SEC as described in previous section. **Table S1** shows the corresponding results.

Additional figures and tables

Figure ESI-1 Reaction scheme for the preparation of: A) PEG-Br macroinitiator, B) pre-crosslinker and the crosslinker DMIBMA and C) poly(ethyleneglycol)₄₅-*block*-poly(diethylaminoethyl-methacrylate-*stat*-3,4-dimethylmaleinimidobutylmethacrylate)₉₉ (PEG₄₅-*b*- P(DEAMA-*s*-DMIBM)₉₂; BCP1).

Figure ESI-2 Swelling-shrinking cycles of pH-responsive polymersomes between pH 5 and pH 8 Psome *fresh and* Psome *frozen* storage for different times.

Figure ESI-3 Diameter of the reconstituted non- crosslinked Psomes studied by DLS using SM-1 (stored at -20°C for 8 days) and SM-2 (stored at 4°C for 8 days after freeze-drying process) as storage methods.

Code	Polymer Chemical Composition	M _w (g/mol)ª	M _n (g/mol)ª	Ð (Mw/Mn)ª	M _n estimated by NMR ^b
BCP1	PEG ₄₅ -b-(DEAEMA ₇₃ -s- DMIBM ₁₉)	29300	23850	1.22	20800

Table ESI-1 Specifications of Block copolymers synthesized by ATRP

^aMolar mass distribution is determined by SEC. ^b Molecular weight is calculated by ¹H NMR.

Table ESI-2 Diameter distribution of polymersomes (Psome) modified with HSA, investigated as (i) freshly prepared sample, (ii) frozen sample at -20°C for 1 day followed upon gentle thawing to room temperature, and (ii) after freeze-drying and direct redispersion in slightly acidic solution. *The DLS measurements correspond to Psome at pH 5.

Modified Psome*	Diameter (nm)	PDI
Psome-HSA fresh	128	0.224
Psome-HSA frozen	126	0.256
Psome-HSA-FD	116	0.181

References

(1) Gaitzsch, J.; Appelhans, D.; Wang, L.; Battaglia, G.; Voit, B. *Angew. Chem. Int. Ed,* 2012, **51**, 4448.

- (2) Gräfe, D.; Gaitzsch, J.; Appelhans, D.; Voit, B. Nanoscale, 2014, 6, 10752.
- (3) Matyjaszewski, K. Macromolecules, 2012, 45, 4015.
- (4) Save, M.; Weaver, J. V. M.; Armes, S. P.; McKenna, P. Macromolecules, 2002, 35, 1152.
- (5) Vo, C. D.; Kuckling, D.; Adler, H. J. P.; Schönhoff, M. Colloid. Polymer. Sci, 2002, 280, 400.