Selective Yields of Furfural and Hydroxymethylfurfural from Glucose in Tetrahydrofuran over Hβ Zeolite[†]

Jin Tan^{a,b,c}, Haiyong Wang^{a,b,c}, Longlong Ma^{a,b,c*}, Chenguang Wang^{a,b,c}, Qiying

Liu^{a,b,c}, Qi Zhang^{a,b,c}, Minghong He^{a,b,c}

^a.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS),

510640, Guangzhou, China.

^bCAS Key Laboratory of Renewable Energy, 510640, Guangzhou, China.

^c.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and

Development, 510640, Guangzhou, China.

* E-mail: <u>mall@ms.giec.ac.cn</u>

1 Catalyst characterization

1.1 Procedures for XRD test

The crystalline structure of catalysts were characterized by X-ray diffraction (XRD) (X Pert Pro MPD with Cu K α radiation, Philip) operated at 40 kV and 30 mA. The scanning angle (2 θ) ranged from 5° to 80° and they were recorded with 0.0167° steps. 1.2 Procedures for TG-DTA test

The thermo-gravity - differential thermal analysis (TG-DTA) results of used catalyst was performed on a STA HP/2 instrument (air atmosphere 50 mL/min and heating rate of 10 Kmin⁻¹). Prior to the test, the used catalyst was dried in air at 393 K for 24 h. 1.3 Procedures for Py-IR test

Py-IR was performed in Vertex 70 (Bruker) FT-IR spectrophotometer with a deuterium triglycine sulfate (DTGS) detector. For each run, the sample was pressed into self-supporting wafers and degassed in vacuum at 573 K for 1 h followed by exposure to pyridine vapor. then, the Py-IR spectra were measured at 473 K after applying vacuum for 30 min. The quantification of Brønsted and Lewis acid sites was estimated from the integrated area of adsorption bands at 1540 cm⁻¹ and 1450 cm⁻¹ respectively.

1.4 Procedures for BET test

The Brunauer-Emmett-Teller (BET) surface area, external surface area, pore volume were determined by nitrogen adsorption at 77 K using a QUADRASORB SI analyzer equipped with QuadraWin software system. All samples were degassed at 573 K for 8 h before adsorption measurement. After measurement, surface areas were calculated by the BET method and micropore volumes were calculated with the T-plot method.

Fig. S1 Selectivities of different products in various solvents.

Reaction conditions: 0.5 g glucose, 0.1 g H\beta zeolite, 9.5 g solvent, 453 K, 120 min.

Fig. S2 HPLC chromatograms of the products produced from glucose in THF/water.

(a) refractive index detector, (b) UV detector. 1) glucose, 2) fructose, 3) formic acid, 4)

LA, 5) HMF, 6) THF, 7) FFA.

Fig. S3 XRD patterns of H β zeolite before and after reaction. (a) fresh, (b) after

reaction.

Fig. S4 TG-DTA analysis of the used H β zeolite.

Catalyst	$A_{\rm BET}$ / m ² /g	$A_{\rm ext}/{\rm m^2/g}$	$V_{\rm mic}$ / cm ³ /g	Pore Size / Å
Before	457.18	114.99	0.18	27.08
After	293.22	95.04	0.10	25.92

Table S1 Physicochemical properties of $H\beta$ zeolite before and after reaction.

Fig. S5 Py-IR spectrum of H β zeolite before (a) and after reaction (b).

and after reaction.				
Catalyst —	Acid amount (µ	umol [·] g ⁻¹ catalyst)	- Lowis said/Properted said	
	Lewis Acid	Brønsted Acid	Lewis acid/Diplisied acid	
Before	254.9	490.7	0.52	
After	139.9	146.2	0.96	

Table S2 Comparison of Lewis acid and Brønsted acid content of H β zeolite before

No.	Substrate	Catalyst	Solution	Yield / %	Pros and Cons	Ref.
					Simple catalyst but	
					with corrosive and	
1	xylose	H_2SO_4	[BMIM]Cl	13.0	unrecyclable. Lower	[1]
					yield and valuable	
					solution.	
					Higher yield.	
2	xylose	Sn _{0.625} Cs _{0.5} PW	DMSO/H ₂ O	63.0	Complex and	[2]
					valuable catalyst.	
					Higher yield.	503
3 xylose	CrPO ₄	THF/H ₂ O	67.0	Poisonous catalyst.	[3]	
					Higher yield and	
					simple solution.	
4	xylose	НСООН	H ₂ O	74.0	Corrosive and	[4]
					unrecyclable	
					catalyst.	
5	xylose	SAPO-34	GVL/H ₂ O	40.0	Simple system.	[5]
6	switchgrass	SAPO-34	GVL/H ₂ O	31.0	valuable solution.	[5]
					Higher yield.	
7 xylose					Valuable catalyst	5.63
	[EMIM][HSO4]	toluene	84.0	and poisonous	[6]	
				solution.		
					Higher yield, simple	
8	corncob	H_2SO_4	H_2O	69.0	system and simple	[7]
					solution. Corrosive	

Table S3 Typical production of FFA from pentose and hexose in various solutions.

and	unrecycl	labl	e
-----	----------	------	---

catalyst.

9	xylose	Нβ	GBL/H ₂ O	87.2	Higher yield and	[8]
10	arabinose	Нβ	GBL/H ₂ O	76.8	simple system.	[8]
					Catalyst needs	
11	glucose	Ηβ	GBL/H ₂ O	53.2	dealuminizing	[8]
					procedures.	
12	12 glugogo	Нβ	GVL/H ₂ O	33.0	Simple system.	[9]
12	glucose			55.0	Valuable solution.	
					Simple system.	
					Lower yield,	
13	13 glucose	SC-CaCt-700	GVL/H ₂ O	18.6	complex catalyst	[10]
					and valuable	
					solution.	
14	fructose	Нβ	GBL/H ₂ O	63.5	Higher yield and	[8]
					simple system.	
15 cellulose	Нβ	GVL/H ₂ O	38.5	Catalyst needs	[8]	
				dealuminizing		
					procedures.	
					Simple system.	This
16	glucose	Нβ	THF/H ₂ O	35.2	Recyclable catalyst	work
				and solution.	WUIK	

References:

- [1] C. Sievers, I. Musin, T. Marzialetti, M. B. Valenzuela Olarte, P. K. Agrawal and C. W. Jones, ChemSusChem., 2009, 2, 665-671.
- [2] X. Guo, F. Guo, Y. Li, Z. Zheng, Z. Xing, Z. Zhu, T. Liu, X. Zhang and Y. Jin, Appl. Catal. A-Gen., 2018, 558, 18-25.
- [3] S. Xu, D. Pan, Y. Wu, X. Song, L. Gao, W. Li, L. Das and G. X, Fuel Process. Technol., 2018, 175, 90-96.
- [4] W. Yang, P. Li, D. Bo and H. Chang, Carbohyd. Res., 2012, 357, 53-61.
- [5] S. M. Bruce, Z. Zong, A. Chatzidimitriou, L. E. Avci, J. Q. Bond, M. A. Carreon and S. G. Wettstein, J. Mol. Catal. A-Chem., 2016, 422, 18-22.
- [6] S. Lima, P. Neves, M. M. Antunes, M. Pillinger, N. Ignatyev and A. A. Valente, Appl. Catal. A-Gen., 2009, 363, 93-99.
- [7] J. W. Dunning and E. C. Lathrop, Ind. Eng. Chem., 1945, 37, 24-29.
- [8] J. Cui, J.Tan, T. Deng, X. Cui, Y. Zhu and Y. Li, Green Chem., 2016, 18, 1619-1624.
- [9] E. I. Gürbüz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, W. Y. Lim and J. A. Dumesic, Angew. Chem. Int. Ed., 2013, 52, 1270-1274.
- [10] W. Li, Y. Zhu, Y. Lu, Q. Liu, S. Guan, H. Chang, H. Jameel and L. Ma, Bioresour. Technol., 2017, 245, 258-265.