Supplementary data

Co/Cu-MFFs derived mesoporous ternary metal oxide microcubes for enhancing the catalytic activity of the CO oxidation reaction

HuijunSong,^{abc} Li Zhang,^{*abcd} GuanchengXu,^{abc} Chi Zhang,^{abc} Xin Ma,^{abc} Lu

Zhang,^{abc} DianzengJia*^{abc}

^a Key Laboratory of Energy Materials Chemistry (Xinjiang University), Ministry of

Education, Urumqi, Xinjiang, 830046, P. R. China.E-mail:zhanglixju@163.com,

jdz0991@gmail.com; Fax: +86-991-8580586; Tel: +86-991-8580586.

^b Key Laboratory of Advanced Functional Materials, Autonomous Region, Urumqi, Xinjiang,

830046, P. R. China.

^c Institute of Applied Chemistry, Urumqi, Xinjiang, 830046, P. R. China.

^d Physics and Chemistry Detecting Center, Xinjiang University, Urumqi, Xinjiang, 830046, P.

R. China.

*Corresponding author. E-mail:zhanglixju@163.com, jdz0991@gmail.com. Tel./Fax: +86-

991-8580586

Fig. S1 TGA curves of as-prepared precursors under air flow.

Fig. S2 SEM images of $[CH_3NH_3][Co(HCOO)_3]$ (a) and $[CH_3NH_3][Cu_{1/3}Co_{2/3}(HCOO)_3]$ (b).

Fig. S3 SEM images of $[CH_3NH_3][Co(HCOO)_3]$ preprared in the absence of PVP-K30.

Fig. S4 SEM–EDX mapping images of $Cu_{0.5}Co_{2.5}O_4$ (a) and $Cu_{1.5}Co_{1.5}O_4$ (b).

Fig. S5 EDX spectrum of $Cu_{0.5}Co_{2.5}O_4$ (a), $CuCo_2O_4$ (b) and $Cu_{1.5}Co_{1.5}O_4$ (c).

Fig. S6 Barrett-Joyner-Halenda (BJH) pore size distribution plots of Co_3O_4 (a) and $CuCo_2O_4$

⁽b)

Fig. S7 CO oxidation conversions of without materials and with 50 mg of precursors performed under different temperatures.

	Preparations of precursors			Cu/Co atomic ratio	
Sample	Co(NO ₃) ₂ ·6H ₂ O (mmol)	Cu(NO ₃) ₂ ·3H ₂ O (mmol)	Calculated Cu/Co atomic ratio	EDX	ICP
Co ₃ O ₄	1	0	0	0	0
Cu _{0.5} Co _{2.5} O ₄	5/6	1/6	0.2	0.22	0.235
CuCo ₂ O ₄	2/3	1/3	0.5	0.52	0.574
Cu _{1.5} Co _{1.5} O ₄	1/2	1/2	1	1.07	1.147

Table S1 The measured Cu/Co atomic ratio of $Cu_xCo_{3-x}O_4$ by SEM-EDX, ICP and the calculated Cu/Co atomic ratio in the preparation of precursors.

Catalyst	The temperature of full CO conversion	Ref.
Co ₃ O ₄	170 °C	Zhang et al.[1]
Cu/CuO _x /C	155 °C	Zhang et al.[2]
Co_3O_4 _ Cu_2 ($Cu/Co = 1/4$)	120 °C	Zhou et al.[3]
α -Fe ₂ O ₃	255 °C	Cui et al.[4]
Co ₃ O ₄	140 °C	This work
CuCo ₂ O ₄	120 °C	This work

Table S2 The activity of transition metal oxides as catalysts for CO oxidation reported in this work and other reference.

Sample	Specific surface area (m ² g ⁻¹)	Co ^{2+/} Co ³⁺ atomic ratio	Ref.
Co ₃ O ₄ nanocube	6.37	1.05	Zhang et al.[1]
Co ₃ O ₄ nanocube	9.37	1.47	Zhang et al.[1]
Co ₃ O ₄ nanocube	25.59	0.627	This work

Table S3 Specific surface area and $Co^{2+/}Co^{3+}$ atomic ratio of pure Co_3O_4 reported in this work and reference.

References

[1] C. Zhang, L. Zhang, G.-C. Xu, X. Ma, Y.-H. Li, C.-Y. Zhang, D.-Z. Jia, New J. Chem., 2017, 41,1631-1636.

[2] R. Zhang, L. Hu, S. Bao, R. Li, L. Gao, R. Li, Q. Chen, J. Mater. Chem. A, 2016, 4, 8412-8420.

[3] M. Zhou, L. Cai, M. Bajdich, M. García-Melchor, H. Li, J. He, J. Wilcox, W. Wu, A. Vojvodic, X. Zheng, ACS Catal., 2015, 5, 4485-4491.

[4] L. Cui, D. Zhao, Y. Yang, Y. Wang, X. Zhang, J. Solid State Chem., 2017, 247, 168-172.