Supplementary Information for:

Optically active distorted cyclic triptycenes:

chiral stationary phases for HPLC

Tomoyuki Ikai, ${ }^{\text {a }}$ Naoya Nagata, ${ }^{\text {a }}$ Seiya Awata, ${ }^{\text {a }}$ Yuya Wada, ${ }^{\text {a }}$ Katsuhiro Maeda, ${ }^{\text {a }}$ Motohiro Mizuno ${ }^{\text {a }}$ and Timothy M. Swager ${ }^{\text {b }}$
${ }^{\text {a }}$ Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
${ }^{\text {b }}$ Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, United States

Table of content:
\qquad

4. Determination of absolute configuration \quad..
5. Preparation of HPLC columns .. S-12

1. Materials

Anhydrous solvents (acetone, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF)), common organic solvents and potassium carbonate were purchased from Kanto Kagaku (Tokyo, Japan). Copper (I) iodide (CuI), triethylamine, diisopropylamine (DIPA) and tetra- n-butylammonium fluoride (TBAF) $(1.0 \mathrm{M}$ in $\mathrm{THF}, 0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}$) were from Sigma-Aldrich (St. Louis, MO, USA). 2-[2-(2-Chloroethoxy)ethoxy]ethanol and 4-methylphenol were from Tokyo Kasei Kogyo (TCI) (Tokyo, Japan). 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl), N, N-dimethyl-4-aminopyridine (DMAP), chloromethyl methyl ether (MOMCl), 4-bromocatechol and (triisopropylsilyl)acetylene (TIPSA) were purchased from Wako Pure Chemical Industries (Osaka, Japan). Tetrakis(triphenylphosphine)palladium $(0)\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ was purchased from Nacalai (Kyoto, Japan). Porous spherical silica gel with a mean particle size of $5 \mu \mathrm{~m}$ and a mean pore diameter of 30 nm (Daiso gel SP-300-5) was purchased from OSAKA SODA (Osaka, Japan) and was silanized using (3-azidopropyl)triethoxysilane ${ }^{\mathrm{S} 1}$ in toluene/pyridine ($8 / 1, \mathrm{v} / \mathrm{v}$) at $100{ }^{\circ} \mathrm{C}$ to prepare an azide-functionalized silica gel (A-silica). All starting materials for the synthesis of axially chiral biaryl compounds were purchased from Nacalai, Wako Pure Chemical Industries and TCI. Chiralpak IG columns (column dimensions: $25 \times 2.0 \mathrm{~cm}$ (i.d.) and 25×0.46 cm (i.d.)) were purchased from Daicel (Tokyo, Japan). rac-2,6-Diaminotriptycene (rac-1), ${ }^{\mathrm{S} 2}$ 4 -[(triisopropylsilyl)ethynyl]phenol, ${ }^{\mathrm{S} 3} 2$-(methoxymethoxy)phenol, ${ }^{\mathrm{S} 4} \mathbf{1 0},{ }^{\mathrm{S5}} \mathbf{1 1 a}^{\mathrm{S5}}$ and $\mathbf{1 1 d}{ }^{\mathrm{S} 5}$ were prepared according to a literature procedure.

2. Instruments

NMR spectra were taken on a JNM-ECA 500 (JEOL) (500 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) spectrometer in CDCl_{3} using tetramethylsilane as the internal standard. Melting points were measured on a Yanako melting point apparatus and were uncorrected. Thermogravimetric analysis (TGA) was conducted with a TG/DTA6200 (SII NanoTechnology, Chiba, Japan) at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under an air flow. IR spectra were obtained using a JASCO (Hachioji, Japan) Fourier Transform IR-4700 spectrophotometer with a KBr pellet. Absorption and circular dichroism (CD) spectra were measured using a JASCO V-570 (a scanning rate of $200 \mathrm{~nm} \mathrm{~min}{ }^{-1}$ and a bandwidth of 1.0 nm) and a JASCO J-725 (a scanning rate of $100 \mathrm{~nm} \mathrm{~min}^{-1}$ and a bandwidth of 1.0 nm) spectrometers, respectively, with a quartz cell of 1.0 mm path length (UV-grade) (GL Sciences, Tokyo, Japan). The temperature was controlled using a JASCO ETC-505T (absorption spectroscopy) and a JASCO PTC-348WI apparatus (CD spectroscopy).

The optical rotation was measured at $25^{\circ} \mathrm{C}$ with a JASCO P-1030 polarimeter. Chromatographic separations of enantiomers were performed using a JASCO PU-2080 Intelligent HPLC pump equipped with a column oven (JASCO CO-1560), a multi-wavelength detector (JASCO MD2018) and a CD detector (JASCO CD-2095). A solution of a chiral compound was injected into the chromatographic system by a Rheodyne Model 7125 injector (Rheodyne, Rohnert Park, CA, USA). The single crystal X-ray diffraction measurement was performed on a Bruker Venture D8 diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-700 spectrometer with fast atom bombardment (FAB) as the ionization technique.

3. Synthesis

2-[2-(2-Chloroethoxy)ethoxy]acetic acid (2), catechol derivatives (a mixture of $\mathbf{4 a}$ and $\mathbf{4 b}$) and triptycene derivatives $\left((R, R)\right.$ - and $(S, S)-\mathbf{9}$ and rac- $\left.\mathbf{8}^{\prime}\right)$ were prepared according to Scheme S1. Axially chiral biaryl compounds were synthesized thorough common condensation reactions using the corresponding alcohols and carboxylic acids as starting materials.

Scheme S1 Synthesis of 2-[2-(2-chloroethoxy)ethoxy]acetic acid (2) (A), catechol derivatives (a mixture of $\mathbf{4 a}$ and $\mathbf{4 b}$) (B) and triptycene derivatives $\left((R, R)\right.$ - and $(S, S)-\mathbf{9}(\mathrm{C})$ and $\left.\mathrm{rac}-\mathbf{8}^{\boldsymbol{\prime}}(\mathrm{D})\right)$.

2-[2-(2-Chloroethoxy)ethoxy]acetic acid (2). 2-[2-(2-Chloroethoxy)ethoxy]ethanol (7.77 g, 46.1 mmol) was slowly added to $60 \% \mathrm{HNO}_{3}$ aqueous solution (20 mL) and the mixture was stirred at room temperature for 48 h . After quenching the reaction with ice-cold water, the mixture was extracted with dichloromethane, and the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The target compound ($6.8 \mathrm{~g}, 80 \%$ yield) was obtained as a pale yellow oil and was used for the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): δ 4.19 (s, 2H, CH2), 3.82-3.64 (m, 8H, CH2).
$\mathbf{4 a} / \mathbf{4 b}$ mixture. To a solution of 4-bromocatechol ($5.16 \mathrm{~g}, 27.3 \mathrm{mmol}$) and potassium carbonate ($5.66 \mathrm{~g}, 40.9 \mathrm{mmol}$) in anhydrous acetone (82 mL) was added $\mathrm{MOMCl}(2.19 \mathrm{~g}, 27.2$ mmol). After stirring at room temperature for 12 h , the mixture was diluted with ethyl acetate, washed with 1 N HCl aqueous solution and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was passed through a short pad of silica gel using hexane/ethyl acetate $(4 / 1, \mathrm{v} / \mathrm{v})$ as the eluent and the solvent was removed under a reduced pressure. The residue (4.57 g) was dissolved in degassed THF/DIPA ($3 / 1, \mathrm{v} / \mathrm{v}$) (65 mL). To this solution was added $\left.\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)}\right)_{4}(1.08 \mathrm{~g}, 0.93 \mathrm{mmol}), \mathrm{CuI}(358 \mathrm{mg}, 1.88 \mathrm{mmol})$ and TIPSA $(6.85 \mathrm{~g}, 37.6 \mathrm{mmol})$. The solution was stirred at $60{ }^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the mixture was diluted with ethyl acetate, washed with 1 N HCl aqueous solution and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by silica gel chromatography using hexane/ethyl acetate ($4 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired $\mathbf{4 a} / \mathbf{4 b}$ mixture $(72 / 28, \mathrm{~mol} / \mathrm{mol})$ as a pale yellow oil $(4.94 \mathrm{~g}, 54 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \mathbf{4 a}: \delta 7.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.10(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.12 (s, 21H, TIPS); 4b: $\delta 7.07$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.00-6.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 5.87(\mathrm{~s}, 1 \mathrm{H}$, OH), $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12(\mathrm{~s}, 21 \mathrm{H}$, TIPS).
rac-3. 2-[2-(2-Chloroethoxy)ethoxy]acetic acid ($4.63 \mathrm{~g}, 25.3 \mathrm{mmol}$), rac-1 (3.26 g, 11.4 mmol) and DMAP ($3.08 \mathrm{~g}, 25.1 \mathrm{mmol}$) were dissolved in anhydrous DMF (41 mL), and the solution was cooled to $0^{\circ} \mathrm{C}$. To this solution was added EDC-HCl $(4.83 \mathrm{~g}, 25.1 \mathrm{mmol})$ and the mixture was stirred at room temperature for 12 h . The mixture was diluted with hexane/ethyl acetate $(1 / 3, v / v)$, washed with 1 N HCl aqueous solution and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by silica gel chromatography using dichloromethane/ethyl acetate ($1 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired product as a viscous orange oil ($5.37 \mathrm{~g}, 77 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 8.53(\mathrm{~s}, 2 \mathrm{H}$, NH), 7.81 (s, 2H, ArH), 7.35 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.07$
(dd, $J=7.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{dd}, J=6.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.38(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 4.06(\mathrm{~s}, 4 \mathrm{H}$, CH_{2}), $3.78\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73-3.67\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.64\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.
rac-6. To a solution of rac-3 $(5.46 \mathrm{~g}, 8.90 \mathrm{mmol})$ and potassium carbonate $(1.84 \mathrm{~g}, 13.3$ $\mathrm{mmol})$ in anhydrous DMF (24 mL) was added the $\mathbf{4 a} / \mathbf{4 b}$ mixture $(72 / 28, \mathrm{~mol} / \mathrm{mol})(3.42 \mathrm{~g}, 14.7$ mmol). The solution was stirred at $90{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was diluted with hexane/ethyl acetate ($1 / 2, \mathrm{v} / \mathrm{v}$), washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by evaporation, the crude product was passed through a short pad of silica gel using hexane/acetone $(1 / 1, \mathrm{v} / \mathrm{v})$ as the eluent and the solvent was removed under a reduced pressure. The residue containing rac-5 (2.47 g) was dissolved in THF/methanol ($1 / 1, \mathrm{v} / \mathrm{v}$) (81 mL). To this solution was slowly added conc. $\mathrm{HCl}(8.1 \mathrm{~mL})$. After stirring at room temperature for 6 h . The mixture was diluted with hexane/ethyl acetate ($1 / 4, \mathrm{v} / \mathrm{v}$) and the solution was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed by evaporation and the crude product was purified by silica gel chromatography using hexane/acetone ($1 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give rac- 6 as a viscous yellow oil ($1.43 \mathrm{~g}, 18 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), \delta 8.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.79-7.78(\mathrm{~m}, 2 \mathrm{H}$, ArH) $7.34-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.10-6.96 (m, 6H, ArH), $6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 4.17-4.15 (m, 2H, CH2 $), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80-3.72\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65(\mathrm{t}, J$ $\left.=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.11(\mathrm{~s}, 21 \mathrm{H}, \mathrm{TIPS})$.
rac-7. Potassium carbonate $(7.13 \mathrm{~g}, 51.6 \mathrm{mmol})$ and rac-6 ($1.42 \mathrm{~g}, 1.64 \mathrm{mmol}$) were dispersed in anhydrous DMF (1600 mL) and the solution was stirred at $90{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was diluted with hexane/ethyl acetate ($1 / 4, \mathrm{v} / \mathrm{v}$), washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by evaporation, the crude product was purified by silica gel chromatography using hexane/acetone ($1 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired product as a viscous orange oil ($1.06 \mathrm{~g}, 78 \%$ yield). The enantiomers were resolved by chiral high-performance liquid chromatography (HPLC) on Chiralpak IG (column dimensions: $25 \mathrm{~cm} \times 2.0 \mathrm{~cm}$ (i.d.); eluent: hexane/ethyl acetate (3/2, v/v); flow rate 10 $\mathrm{mL} \mathrm{min}{ }^{-1}$; temperature $\left.c a .20{ }^{\circ} \mathrm{C}\right)$ to give $(R, R)-7(246 \mathrm{mg}, 0.296 \mathrm{mmol})$ and $(S, S)-7(246 \mathrm{mg}$, 0.296 mmol) as a pale yellow solid. The enantiomeric excess of the resulting (R, R) - and $(S, S)-7$ were confirmed to be 99% and 96%, respectively, by chiral HPLC using a Chiralpak IG (column dimensions: $25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ (i.d.); eluent: hexane/ethyl acetate ($3 / 2, \mathrm{v} / \mathrm{v}$); flow rate $0.4 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$; temperature ca. $20^{\circ} \mathrm{C} ; t_{(R, R)-7}=53.2 \mathrm{~min}, t_{(S, S)-7}=58.7 \mathrm{~min}$). rac-7: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{rt}): \delta 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{ArH}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.94(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 6.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10-3.51(\mathrm{~m}, 20 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.22(\mathrm{~s}, 21 \mathrm{H}, \mathrm{TIPS}) .(R, R)-7:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.74(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$), 7.78 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.64 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), $7.36-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.09 (s, 1H, ArH), 7.00-6.97 (m, 2H, ArH), 6.95 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.91 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10-3.51\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{~s}, 21 \mathrm{H}, \mathrm{TIPS})$. $(S, S)-7:{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.00-6.97 (m, 2H, ArH), 6.94 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.91 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.73$ (d, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.25(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 5.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.10-3.50\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22(\mathrm{~s}, 21 \mathrm{H}$, TIPS $)$.
(R, R)-8. To a solution of $(R, R)-7(224 \mathrm{mg}, 0.269 \mathrm{mmol})$ in THF $(11 \mathrm{~mL})$ was added TBAF (1.0 M in THF, $0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and was diluted with dichloromethane. The solution was washed with 1 N HCl aqueous solution and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the crude product was then purified by silica gel chromatography using hexane/acetone ($1 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired product as a pale yellow solid ($180 \mathrm{mg}, 99 \%$ yield). Mp : $126.6-$ $127.1^{\circ} \mathrm{C} .[\alpha]^{25} \mathrm{D}+75.0\left(c 0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.72$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.06-7.02 (m, 2H, ArH), 7.01-6.97 (m, 2H, ArH), 6.85-6.81 (m, 2H, ArH), 6.76-6.72 (m, $2 \mathrm{H}, \mathrm{ArH}), 6.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.05(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.04\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89-3.56\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 3.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 168.33,149.58,148.34,146.63,146.51,144.17,144.12,141.74$, $141.63,134.08,134.00,126.23,125.37,123.86,123.78,123.61,123.53,118.08,116.65,116.61$, $116.29,116.02,114.89,113.41,83.76,76.41,71.69,71.65,70.59,70.56,70.44,70.33,69.81$, 68.32, 67.86, 53.62, 53.57. IR (KBr, cm^{-1}): $2101(\mathrm{C} \equiv \mathrm{C}), 1680(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right), 675.2701$; found 675.2717.
$(S, S)-\mathbf{8}$. The title compound was prepared from $(S, S)-\mathbf{7}$ in the same way as $(R, R)-\mathbf{8}$ and obtained in 99% yield as a pale yellow solid. Mp: 124.8-125.3 ${ }^{\circ} \mathrm{C} .[\alpha]^{25} \mathrm{D}-75.0\left(c 0.2, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.67 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.01-6.97$
($\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}$), 6.85-6.81 (m, 2H, ArH), 6.76-6.72 (m, 2H, ArH), $6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.05\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.04\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.89-3.57 (m, 16H, CH2), $3.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 168.33,149.58$, $148.34,146.63,146.51,144.17,144.11,141.74,141.63,134.08,134.00,126.23,125.37,123.86$, $123.78,123.62,123.53,118.06,116.65,116.61,116.29,116.02,114.89,113.40,83.76,76.41$, $71.69,71.64,70.59,70.56,70.44,70.32,69.81,68.32,67.86,53.62,53.57 . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2101$ $(\mathrm{C} \equiv \mathrm{C}), 1682(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right), 675.2701$; found 675.2713 .
rac-9a. To a solution of rac-3 $(3.80 \mathrm{~g}, 6.20 \mathrm{mmol})$ and potassium carbonate $(1.28 \mathrm{~g}, 9.26$ $\mathrm{mmol})$ in anhydrous DMF (19 mL) was added 4-[(triisopropylsilyl)ethynyl]phenol ($1.70 \mathrm{~g}, 6.20$ mmol). The solution was stirred at $90{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was diluted with hexane/ethyl acetate ($1 / 4, \mathrm{v} / \mathrm{v}$), washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by evaporation, the crude product was purified by silica gel chromatography using hexane/acetone ($3 / 2, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired product as a viscous brown oil ($2.58 \mathrm{~g}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.36-7.33 (m, 1H, ArH), 7.32-7.29 (m, 1H, ArH), 7.27 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.10 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.05 (dd, $J=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.99-6.94$ (m, 3H, ArH), $6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.12\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{t}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.74-3.71\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14(\mathrm{~s}, 21 \mathrm{H}$, TIPS).
rac-9b. To a solution of $r a c-9 \mathbf{a}(2.57 \mathrm{~g}, 3.01 \mathrm{mmol})$ and potassium carbonate $(624 \mathrm{mg}, 4.52$ $\mathrm{mmol})$ in anhydrous DMF (9 mL) was added 4-methylphenol ($0.49 \mathrm{~g}, 4.5 \mathrm{mmol}$). The solution was stirred at $90^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was diluted with hexane/ethyl acetate ($1 / 4, \mathrm{v} / \mathrm{v}$), washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by evaporation, the crude product was purified by silica gel chromatography using hexane/acetone $(3 / 2, \mathrm{v} / \mathrm{v})$ as the eluent to give the desired product as a viscous brown oil ($1.59 \mathrm{~g}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.66$ (s, 1H, NH), $7.82(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.10-7.01 (m, 5H, ArH), 6.97-6.95 (m, 3H, ArH), 6.79 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.77 (d, J $=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.13-4.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06(\mathrm{~s}, 4 \mathrm{H}$, CH_{2}), 3.90-3.87 (m, 4H, CH2), 3.75 ($\mathrm{s}, 8 \mathrm{H}, \mathrm{CH}_{2}$), 1.14 ($\mathrm{s}, 21 \mathrm{H}$, TIPS).
rac-9. To a solution of rac-9b ($1.73 \mathrm{~g}, 1.88 \mathrm{mmol}$) in THF (75 mL) was added tetra- n-butylammonium fluoride (1.0 M in THF, $2.3 \mathrm{~mL}, 2.3 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and was diluted with dichloromethane. The solution was washed with 1 N HCl aqueous solution and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the crude product was then purified by silica gel chromatography using hexane/acetone $(1 / 1, \mathrm{v} / \mathrm{v})$ as the eluent to give the desired product as a pale yellow solid ($1.37 \mathrm{~g}, 95 \%$ yield). The enantiomers were resolved by chiral high-performance liquid chromatography (HPLC) on Chiralpak IG (column dimensions: $25 \mathrm{~cm} \times 2.0 \mathrm{~cm}$ (i.d.); eluent: hexane/ethyl acetate ($3 / 7, \mathrm{v} / \mathrm{v}$); flow rate $10 \mathrm{~mL} \mathrm{~min}{ }^{-1}$; temperature $c a .20{ }^{\circ} \mathrm{C}$) to give $(R, R)-9(346 \mathrm{mg}, 0.451 \mathrm{mmol})$ and $(S, S)-9(457 \mathrm{mg}, 0.596 \mathrm{mmol})$ as a pale yellow solid. The enantiomeric excess of the resulting (R, R) - and (S, S)-9 were confirmed to be 99% by chiral HPLC using a Chiralpak IG (column dimensions: $25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$ (i.d.); eluent: hexane/ethyl acetate ($3 / 7, \mathrm{v} / \mathrm{v}$); flow rate $0.4 \mathrm{~mL} \mathrm{~min}^{-1}$; temperature $\mathrm{ca} .20^{\circ} \mathrm{C}$; $t_{(R, R)-9}=19.7 \mathrm{~min}, t_{(S, S)^{-9}}=23.7$ $\min) .(R, R)-9: \mathrm{Mp}: 59.2-59.7^{\circ} \mathrm{C} \cdot[\alpha]^{25} \mathrm{D}+68.0\left(c 0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta$ $8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.37 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.30-7.28 (m, 2H, ArH), 7.09-6.90 (m, 8H, ArH), 6.79-6.76 (m, $4 \mathrm{H}, \mathrm{ArH}$), $5.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.11\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.89-3.87 (m, 4H, CH2), $3.74\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 168.01,167.96,158.97,156.55,146.30,146.21,145.07,141.36,141.21$, $134.56,134.45,133.76,130.40,130.09,125.24,123.90,123.86,123.65,123.61,116.27,116.23$, $116.03,116.00,114.68,114.57,114.54,83.66,76.20,71.20,71.17,70.50,70.41,70.35,70.14$, 69.89, 67.33, 67.27, 53.62, 53.53, 20.59. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2103(\mathrm{C}=\mathrm{C}), 1678(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 767.3327; found 767.3340. (S,S)-9: Mp: 58.8-59.3 ${ }^{\circ} \mathrm{C}$. $[\alpha]^{25} \mathrm{D}-67.5\left(c \quad 0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.61(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 7.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.30-7.28 (m, 2H, ArH), 7.09-6.90 (m, 8H, ArH), 6.79-6.75 (m, 4H, ArH), 5.24 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 5.22 (s, $1 \mathrm{H}, \mathrm{CH}$), 4.11-4.09 (m, 4H, CH2 $)$, $4.05\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89-3.87\left(\mathrm{~m}, 4 \mathrm{H}_{2} \mathrm{CH}_{2}\right), 3.73(\mathrm{~s}, 8 \mathrm{H}$, CH_{2}), $3.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 168.03,167.99$, $158.98,156.57,146.31,146.23,145.10,145.08,141.36,141.21,134.58,134.48,133.77,130.39$, $130.11,125.25,123.91,123.88,123.66,123.62,116.29,116.25,116.04,116.00,114.68,114.59$, $114.55,83.68,76.24,71.21,71.17,70.50,70.41,70.34,70.14,69.88,67.34,67.28,53.62,53.54$, 20.62. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2103(\mathrm{C} \equiv \mathrm{C}), 1680(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m/z calcd for $\mathrm{C}_{47} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{8}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right), 767.3327$; found 767.3340 .
rac-8'a. To a solution of $\mathrm{rac}-\mathbf{3}(0.60 \mathrm{~g}, 0.98 \mathrm{mmol})$ and potassium carbonate $(0.21 \mathrm{~g}, 1.5$ mmol) in anhydrous DMF (3 mL) was added 2-(methoxymethoxy)phenol ($0.16 \mathrm{~g}, 1.0 \mathrm{mmol}$). The solution was stirred at $90{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was diluted with hexane/ethyl acetate $(1 / 4, \mathrm{v} / \mathrm{v})$, washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by evaporation, the crude product was purified by silica gel chromatography using hexane/acetone $(1 / 1, \mathrm{v} / \mathrm{v})$ as the eluent to give the desired product as a viscous yellow oil ($0.30 \mathrm{~g}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.52$ (s, 1H, NH), $7.85(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.81(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.25 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.12-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.04(\mathrm{dd}, J=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.99-6.88 (m, 6H, ArH), $5.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.19(\mathrm{t}, J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80-3.70(\mathrm{~m}, 10 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.66\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
rac-8'b. To a solution of rac-8'a ($0.29 \mathrm{~g}, 0.40 \mathrm{mmol}$) in THF/methanol ($1 / 1, \mathrm{v} / \mathrm{v}$) (12 mL) was slowly added conc. $\mathrm{HCl}(1.2 \mathrm{~mL})$. After stirring at room temperature for 6 h . The mixture was diluted with hexane/ethyl acetate $(1 / 4, v / v)$ and the solution was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed by evaporation and the crude product was purified by silica gel chromatography using hexane/acetone $(1 / 1, \mathrm{v} / \mathrm{v})$ as the eluent to give rac-8'b as a yellow solid ($0.20 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 8.74$ (s, $1 \mathrm{H}, \mathrm{NH}$), 8.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.80 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.74 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 7.33-7.29 (m, 2H, ArH), 7.25 (s , $1 \mathrm{H}, \mathrm{OH}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, 7.12-7.05 (m, 3H, ArH), 6.98-6.94 (m, 4H, ArH), 6.87-6.83 (m, 2H, ArH), $5.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.18\left(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79-3.70\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
rac-8'. Potassium carbonate $(1.27 \mathrm{~g}, 9.20 \mathrm{mmol})$ and $\mathrm{rac}-\mathbf{8}^{\mathbf{\prime}} \mathbf{b}(0.19 \mathrm{~g}, 0.28 \mathrm{mmol})$ were dispersed in anhydrous DMF (270 mL) and the solution was stirred at $90{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was diluted with hexane/ethyl acetate ($1 / 4, \mathrm{v} / \mathrm{v}$), washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent by evaporation, the crude product was purified by silica gel chromatography using hexane/acetone ($1 / 2, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired product as a white solid ($71 \mathrm{mg}, 40 \%$ yield). $\mathrm{Mp}: 177.2-177.7{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt): $\delta 8.76$ (s, 2H, NH), 7.70 (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.33 (q, $J=2.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{q}, J=2.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{q}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.81(\mathrm{dd}, J=8.0,1.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 4.05\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.92-3.88 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.83-3.71 (m, 8H, CH2), 3.68-3.57 (m, $6 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}, rt): $\delta 168.39,148.94,146.56,144.20,141.64,134.13,125.40,123.81,123.65,121.89$,
$116.49,116.06,114.46,71.74,70.65,70.43,70.12,68.18,53.66$. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 1677(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right), 651.2701$; found 651.2710 .
rac-1,1'-Binaphthyl-2,2'-diyl bis(4-cyanobenzoate) (rac-11b). rac-1,1'-Bi-2-naphthol (500 $\mathrm{mg}, 1.75 \mathrm{mmol}$), 4-cyanobenzoic acid ($0.77 \mathrm{~g}, 5.2 \mathrm{mmol}$), DMAP ($0.64 \mathrm{~g}, 5.2 \mathrm{mmol}$) were dissolved in anhydrous dichloromethane (9 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added EDC- $\mathrm{HCl}(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$ and the mixture was stirred at rt for 12 h . The mixture was diluted with dichloromethane, washed with 1 N HCl aqueous solution and water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by silica gel chromatography using hexane/dichloromethane ($1 / 4, \mathrm{v} / \mathrm{v}$) as the eluent to give the desired product as a white solid ($0.87 \mathrm{~g}, 91 \%$ yield). Mp: 194.5-195.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 8.01(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.62$ (d, $J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.54-7.48 (m, 8H, ArH), 7.41-7.36 (m, 4H, ArH). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 163.30,146.63,133.26,133.00,132.20,131.80,130.27,130.11,128.34,127.37$, 126.30, 126.02, 123.53, 121.42, 117.92, 116.77. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2231(\mathrm{C}=\mathrm{N}), 1741(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right), 545.1496$; found 545.1506 .
$(R)-(+)-1,1$ '-Binaphthyl-2,2'-diyl bis(4-cyanobenzoate) $((R)$-11b). The title compound was prepared from $(R)-1,1^{\prime}$-bi-2-naphthol and 4-cyanobenzoic acid in the same way as rac-11b and obtained in 99% yield as a white solid. Mp: $122.3-122.8^{\circ} \mathrm{C} .[\alpha]^{25} \mathrm{D}+86.0\left(c 0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 8.01$ (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.93$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.63 $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.54-7.48(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 163.26,146.60,133.23,132.96,132.17,131.76,130.24,130.08,128.30,127.33$, 126.26, 125.99, 123.50, 121.39, 117.88, 116.72. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2232(\mathrm{C} \equiv \mathrm{N}), 1742(\mathrm{C}=\mathrm{O})$. HRMS (FAB): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right), 545.1496$; found 545.1497.
rac-1,1'-Binaphthyl-2,2'-diyl bis(4-nitrophenylacetate) (rac-11c). The title compound was prepared from rac-1,1'-bi-2-naphthol and 4-nitrophenylacetic acid in the same way as rac-11b and obtained in 66% yield as a yellow solid. Mp: 177.3-177.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{rt}): \delta 7.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$, 7.39 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.33$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.16$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.92 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.55\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 168.17,146.66,146.20,139.89,132.99,131.63,129.77,129.72,128.01,127.00$, $126.19,125.55,123.32,123.09,121.40,41.22$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1752 (C=O). HRMS (FAB): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right), 613.1605$; found 613.1618.
rac-1,1'-Binaphthyl-2,2'-diyl bis(3-nitrobenzoate) (rac-11e). The title compound was prepared from rac-1,1'-bi-2-naphthol and 3-nitrobenzoic acid in the same way as rac-11b and obtained in 89% yield as a white solid. Mp: $178.8-179.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): δ 8.32-8.29 (m, 4H, ArH), 8.02 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.94 (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.93 (d, J $=3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.39(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 162.81,148.19,146.61,135.49,133.25,131.87,130.99,130.28,129.68,128.38$, 127.82, 127.47, 126.38, 126.02, 124.87, 123.54, 121.32. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1746 ($\mathrm{C}=\mathrm{O}$). HRMS (FAB): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 585.1292; found 585.1304.

4. Determination of absolute configuration

According to Fig. S1A, $(R, R) \mathbf{- 1}$ was prepared from a previously reported (R, R)-1a, whose absolute configuration had been determined by the single crystal X-ray structure analysis. ${ }^{\mathrm{S} 6}$ Because the CD spectrum of the resulting $(R, R)-\mathbf{1}$ was totally overlapped with that of the optically active 1 prepared from the first-eluted component in Fig. 1A (Fig. S1B), the absolute configurations of the first- and second-eluted components in Fig. 1A were assigned to be $9 R, 10 R$ and $9 S, 10 S$, respectively. The absolute configuration of the optically active 9 was also determined in the same way as 7. A representative synthetic procedure for $(R, R)-\mathbf{1}$ through hydrolysis is described below.

To a solution of $(R, R) \mathbf{- 1 a}(38 \mathrm{mg}, 0.070 \mathrm{mmol})$ in ethanol $(4 \mathrm{~mL})$ was added sodium hydroxide ($30 \mathrm{mg}, 0.75 \mathrm{mmol}$) and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 24 h . After removing the solvent by evaporation, the crude product was purified by silica gel chromatography using dichloromethane/ethyl acetate $(4 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to give (R, R) - $\mathbf{1}$ as a pale yellow solid (4 mg , 21% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 6.95-6.93 (m, 2H, ArH), 6.74 (s, 2H, ArH), 6.24 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 5.15 ($\mathrm{s}, 2 \mathrm{H}$, $\mathrm{CH})$.

5. Preparation of HPLC columns

Preparation of chiral packing materials (CPMs). Immobilization of optically active triptycene derivatives ($\mathbf{8}$ and 9) bearing an ethynyl group onto A-silica by the Huisgen 1,3-dipolar cycloaddition reaction was carried out using CuI as a catalyst in a dry Schlenk flask under nitrogen atmosphere according to a method reported previously (Scheme 2). ${ }^{57}$
(R, R)-8-based CPM. A-silica (500 mg) was dispersed in a solution of $(R, R)-\mathbf{8}(80 \mathrm{mg}, 0.118$ $\mathrm{mmol})$ and $\mathrm{CuI}(22 \mathrm{mg}, 0.11 \mathrm{mmol})$ in DMF/triethylamine ($12 / 1, \mathrm{v} / \mathrm{v})(1.1 \mathrm{~mL})$. After stirring at room temperature for 72 h , the resulting (R, R)-8-bound silica gel was collected by filtration, washed with dichloromethane, methanol, DMF, chloroform and acetonitrile, and dried in vacuo at room temperature overnight. The content of $(R, R)-\mathbf{8}$ chemically bonded to silica gel was estimated to be $7 \mathrm{wt} \%$ by TGA.
$(S, S)-8$ - and (R, R)-9-based CPMs were prepared from $(S, S)-\mathbf{8}$ and $(R, R)-\mathbf{9}$ in the same way as (R, R)-8-based CPM, respectively, and the contents of $(S, S)-\mathbf{8}$ and $(R, R)-\mathbf{9}$ chemically bonded to silica gel were estimated to be $7 \mathrm{wt} \%$ by TGA.

Preparation of chiral columns. After fractionating with sieves, each packing material was packed into a stainless-steel column ($25 \times 0.20 \mathrm{~cm}$ (i.d.)) by a slurry packing technique using a Chemco ECONO-PACKER MODEL CPP-085 (Chemco, Osaka, Japan). ${ }^{\text {S8 }}$ The number of theoretical plates per column was estimated to be approximately 2000 for benzene using a hexane/2-propanol ($97: 3, \mathrm{v} / \mathrm{v}$) mixture as the eluent at a flow rate of $0.2 \mathrm{~mL} \mathrm{~min}^{-1}$, respectively. $1,3,5$-Tri-t-butylbenzene was used as a non-retained compound to estimate the hold-up time $\left(t_{0}\right) .{ }^{\mathrm{S} 9}$

Supporting data

Fig. S1 (A) Synthesis of optically active 1. (B) CD and absorption spectra of optically active 1 in chloroform at $25^{\circ} \mathrm{C}$. $[\mathbf{1}]=1.0 \times 10^{-3} \mathrm{M}$.

Fig. S2 Elution profiles of $(R, R)-\mathbf{8}(\mathrm{A})$ and $(S, S)-\mathbf{8}(\mathrm{B})$ on Chiralpak IG (column, $25 \mathrm{~cm} \times 0.46$ cm (i.d.); eluent, hexane/ethyl acetate ($1 / 1, \mathrm{v} / \mathrm{v}$); flow rate, $0.4 \mathrm{~mL} \mathrm{~min}^{-1}$; temperature, $c a .20^{\circ} \mathrm{C}$). The chromatograms depict UV traces recorded at 254 nm .

Fig. S3 Elution profiles of rac-9 (A), (R, R)-9 (B) and (S,S)-9 (C) on Chiralpak IG (column, 25 $\mathrm{cm} \times 0.46 \mathrm{~cm}$ (i.d.); eluent, hexane/ethyl acetate ($3 / 2, \mathrm{v} / \mathrm{v}$); flow rate, $0.4 \mathrm{~mL} \mathrm{~min}^{-1}$; temperature, ca. $20^{\circ} \mathrm{C}$). The chromatograms depict UV traces recorded at 254 nm . (D) CD and absorption spectra of the first- (red line) and second-eluted (blue line) components in chloroform at $25^{\circ} \mathrm{C}$. $[9]=1.0 \times 10^{-4} \mathrm{M}$.

Fig. S4 IR spectra of A-silica (A), $(R, R)-\mathbf{8}(\mathrm{B})$ and (R, R)-8-immobilized silica gel (C) in KBr pellets.

A: $(S, S)-8$

Fig. S5 IR spectra of (S, S)-8 (A) and (S, S)-8-immobilized silica gel (B) in KBr pellets.

Fig. S6 IR spectra of $(R, R)-9(\mathrm{~A})$ and (R, R)-9-immobilized silica gel (B) in KBr pellets.
B

Fig. S7 (A) X-ray crystal structure of $\mathbf{8}^{\prime}$ represented by a space-filling model. (B) Derivation of the area covered with chiral selectors per unit weight of the modified silica.
$-(R, R)-8 \quad-(R, R)-8+\mathrm{rac}-10(1 / 1, \mathrm{~mol} / \mathrm{mol})$

Fig. S8 ${ }^{1} \mathrm{H}$ NMR spectra of $(R, R)-\mathbf{8}$ in the absence (red lines) and presence (blue lines) of rac-10 in CDCl_{3} at room temperature. $[(R, R)-\mathbf{8}]=[r a c-10]=30 \mathrm{mM}$.

Fig. S9 Elution profiles of $\mathbf{1 0}$ on the $(R, R)-\mathbf{8}$-based CSP at various column temperatures (column dimensions, $25 \times 0.20 \mathrm{~cm}$ (i.d.); eluent, hexane/2-propanol ($97 / 3$, v/v); flow rate, $0.2 \mathrm{~mL} \mathrm{~min}^{-1}$; temperature, $0(\mathrm{~A}), 20(\mathrm{~B}), 40(\mathrm{C})$ and $\left.50(\mathrm{D})^{\circ} \mathrm{C}\right)$. The chromatograms depict UV traces recorded at 254 nm .

Fig. S10 CD and absorption spectra of $(R, R)-\mathbf{8}$ in chloroform at various temperatures. $[(R, R)-\mathbf{8}]=$ $5.0 \times 10^{-4} \mathrm{M}$.

Table S1 Resolutions of racemates on the (R, R)-8-based CSP

$\mathrm{H} / \mathrm{E}(\mathrm{v} / \mathrm{v})^{a}$ Racemate	97/3		90/10		85/15	
	k_{1}	α	k_{1}	α	k_{1}	α
10	$\begin{gathered} 1.54 \\ (S) \end{gathered}$	1.14	$\begin{gathered} 0.52 \\ (S) \end{gathered}$	1.13	$\begin{gathered} 0.43 \\ (S) \end{gathered}$	1.09
11a	$\begin{gathered} 5.82 \\ (S) \end{gathered}$	1.09	$\begin{gathered} 2.43 \\ (S) \end{gathered}$	1.10	$\begin{gathered} 1.92 \\ (S) \end{gathered}$	1.10
11b	$\begin{gathered} 7.49 \\ (S) \end{gathered}$	1.14	$\begin{gathered} 3.53 \\ (S) \end{gathered}$	1.10	$\begin{gathered} 2.52 \\ (S) \end{gathered}$	1.10
11c	8.09	1.00	3.40	1.00	2.53	1.00
11d	1.27	1.00	0.52	1.00	0.44	1.00
11e	9.66	1.00	4.34	1.00	3.28	1.00

[^0]Table S2 Resolutions of racemates on the (R, R)-8-based CSP at different temperatures

Temperature (${ }^{\circ} \mathrm{C}$)	0		20		40		50	
Racemate	k_{1}	α	k_{1}	α	k_{1}	α	k_{1}	α
10	$\begin{gathered} 2.45 \\ (S) \end{gathered}$	1.17	$\begin{gathered} 1.54 \\ (S) \end{gathered}$	1.14	$\begin{gathered} 0.93 \\ (S) \end{gathered}$	1.10	$\begin{gathered} 0.83 \\ (S) \end{gathered}$	ca. 1
11a	$\begin{gathered} 10.9 \\ (S) \end{gathered}$	1.12	$\begin{gathered} 5.82 \\ (S) \end{gathered}$	1.09	$\begin{gathered} 3.06 \\ (S) \end{gathered}$	1.08	$\begin{gathered} 2.32 \\ (S) \end{gathered}$	1.07
11b	$\begin{gathered} 18.0 \\ (S) \end{gathered}$	1.15	$\begin{gathered} 7.49 \\ (S) \end{gathered}$		$\begin{gathered} 4.52 \\ (S) \end{gathered}$	1.06	$\begin{gathered} 3.49 \\ (S) \end{gathered}$	1.06

Column: $25 \mathrm{~cm} \times 0.20 \mathrm{~cm}$ (i.d.). Eluent: hexane/ethanol (97/3, v/v). Flow rate: $0.20 \mathrm{~mL} \mathrm{~min}^{-1}$. Temperature: $20^{\circ} \mathrm{C}$. The characters in parentheses represent the absolute configuration of the first-eluted enantiomer.

Table S3 Resolutions of racemates on the (S, S)-8-based CSP at different temperatures

Temperature (${ }^{\circ} \mathrm{C}$) Racemate	0		40		50	
	k_{1}	α	k_{1}	α	k_{1}	α
10	$\begin{gathered} \hline 2.33 \\ (R) \end{gathered}$	1.17	$\begin{gathered} 0.88 \\ (R) \end{gathered}$	1.09	$\begin{gathered} \hline 0.74 \\ (R) \end{gathered}$	ca. 1
11a	$\begin{gathered} 10.5 \\ (R) \end{gathered}$	1.11	2.92 (R)	1.07	$\begin{gathered} 2.22 \\ (R) \end{gathered}$	1.06
11b	$\begin{gathered} 18.5 \\ (R) \end{gathered}$	1.11	4.42 (R)	1.07	$\begin{gathered} 3.31 \\ (R) \end{gathered}$	1.06

Column: $25 \mathrm{~cm} \times 0.20 \mathrm{~cm}$ (i.d.). Eluent: hexane/ethanol (97/3, v/v). Flow rate: $0.20 \mathrm{~mL} \mathrm{~min}^{-1}$. The characters in parentheses represent the absolute configuration of the first-eluted enantiomer.

Table S4 Resolutions of racemates on the (R, R)-9-based CSP		
Temperature $\left({ }^{\circ} \mathrm{C}\right)$		
Racemate	0	
	k_{1}	α
$\mathbf{1 0}$	1.84	1.0
$\mathbf{1 1 a}$	7.29	1.0
11b	14.3	1.0
11c	11.3	1.0
11d	1.08	1.0
$\mathbf{1 1 e}$	14.5	1.0

Column: $25 \mathrm{~cm} \times 0.20 \mathrm{~cm}$ (i.d.). Eluent: hexane/ethanol $(97 / 3, \mathrm{v} / \mathrm{v})$. Flow rate: $0.20 \mathrm{~mL} \mathrm{~min}{ }^{-1}$. The characters in parentheses represent the absolute configuration of the firsteluted enantiomer.

NMR spectral data

Fig. $\mathbf{S 1 1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $\mathbf{2}$.

Fig. S12 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$ spectrum of the $\mathbf{4 a}$ and $\mathbf{4 b}$ mixture.

Fig. S13 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of rac-3.

Fig. S14 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of rac-6.

Fig. S15 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of rac-7.

Fig. S16 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$ spectrum of (R, R) - 7 .

Fig. $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $(S, S)-7$.

Fig. $\mathbf{S 1 8}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of (R, R)-8.

Fig. $\mathbf{S 1 9}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $(R, R)-\mathbf{8}$.

Fig. S20 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of (S, S)-8.

Fig. S21 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of (S, S)-8.

Fig. S22 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of rac-9a.

Fig. S23 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $\mathrm{rac}-\mathbf{9 b}$. Asterisk denotes a residual solvent peak.

Fig. S24 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $(R, R)-\mathbf{9}$.

Fig. $\mathbf{S 2 5}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $(R, R)-\mathbf{9}$.

Fig. $\mathbf{S 2 6}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $(S, S)-\mathbf{9}$.

Fig. S27 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $(S, S)-\mathbf{9}$.

Fig. $\mathbf{S 2 8}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $\mathrm{rac}-\mathbf{8}{ }^{\prime} \mathbf{a}$.

Fig. S29 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$ spectrum of $\mathrm{rac}-\mathbf{8} \mathbf{\prime} \mathbf{b}$.

X : parts per Million : 1 H

Fig. S30 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $\mathrm{rac}-\mathbf{8}^{\prime}$.

Fig. S31 ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $\mathrm{rac}-\mathbf{8}$,

Fig. S32 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $\mathrm{rac} \mathbf{- 1 1 b}$.

Fig. $\mathbf{S 3 3}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of rac-11b.

Fig. $\mathbf{S 3 4}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $(R) \mathbf{- 1 1 b}$.

Fig. $\mathbf{S 3 5}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $(R) \mathbf{- 1 1 b}$.

Fig. S36 ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt) spectrum of $\mathrm{rac}-\mathbf{1 1 c}$.

Fig. $\mathbf{S 3 7}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of rac-11c.

Fig. S38 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of $\mathrm{rac}-\mathbf{1 1 e}$.

Fig. $\mathbf{S 3 9}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt) spectrum of rac-11e.

Caption for supporting movie

Movie S1. X-ray crystal structure of $\mathbf{8}$, represented by a space-filling model (Animated version of Fig. S7A).

References

S1. J. Jirawutthiwongchai, A. Krause, G. Draeger and S. Chirachanchai, ACS Macro Lett., 2013, 2, 177-180.

S2. Z. Chen and T. M. Swager, Macromolecules, 2008, 41, 6880-6885.
S3. R. Reuter and H. A. Wegner, Chem. Commun., 2013, 49, 146-148.
S4. S. K. Chittimalla, C. Bandi, S. Putturu, R. Kuppusamy, K. C. Boellaard, D. C. A. Tan and D. M. J. Lum, Eur. J. Org. Chem., 2014, 2014, 2565-2575.

S5. T. Ikai, D. Suzuki, Y. Kojima, C. Yun, K. Maeda and S. Kanoh, Polym. Chem., 2016, 7, 4793-4801.

S6. T. Ikai, Y. Wada, S. Awata, C. Yun, K. Maeda, M. Mizuno and T. M. Swager, Org. Biomol. Chem., 2017, 15, 8440-8447.

S7. T. Ikai, S. Awata, T. Kudo, R. Ishidate, K. Maeda and S. Kanoh, Polym. Chem., 2017, 8, 4190-4198.

S8. Y. Okamoto, M. Kawashima, K. Yamamoto and K. Hatada, Chem. Lett., 1984, 13, 739-742.
S9. H. Koller, K.-H. Rimböck and A. Mannschreck, J. Chromatogr. A, 1983, 282, 89-94.

[^0]: ${ }^{a}$ Eluent: $\mathrm{H}=$ hexane; $\mathrm{E}=$ ethanol. Column: $25 \mathrm{~cm} \times 0.20 \mathrm{~cm}$ (i.d.). Flow rate: 0.20 mL min . Temperature: $20^{\circ} \mathrm{C}$. The characters in parentheses represent the absolute configuration of the first-eluted enantiomer.

