Supporting Information

Uncovering the rupture mechanism of carbon nanotube filled

cis-1,4-polybutadiene via molecular dynamics simulation

Xiuying Zhao¹, Tiantian Li¹, Lan Huang³, Bin Li⁴, Jun Liu¹, Yangyang Gao^{1,2*}, Liqun Zhang^{1, 2*}

¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China
²State Key Laboratory of Organic-Inorganic Composites, Beijing University of

 ²State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China
 ³ Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, USA
 ⁴CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for

Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China

^{*} Corresponding author: zhanglq@mail.buct.edu.cn or gaoyy@mail.buct.edu.cn or gaoyy@mail.buct.edu.cn

Fig. S1 Illustration of the method on defining the number and positions of voids. It is noted that the black sub-cell stands for the unoccupied sub-cell (void). In addition, the unoccupied sub-cells can appear within the inner box. For convenient, the unoccupied sub-cells on the surface of box are used as examples. The sub-cells (a) and (b) share a common face (denoted by the red line), which belong to the same void.

Fig. S2 (a) VDWL energy change and (b) the average number of neighbor polybutadiene beads per carbon nanotube (CNT) bead (CN_{np}) with respect to the strain for pure system and the CNT filled systems with different interactions \mathcal{E}_{np} .

Fig. S3 (a) Density distribution of all polybutadiene beads along the tensile direction (L is the length of box along the tensile direction) at strain=0.5. (b) The root mean squared radius of gyration of chains R_g with respect to the strain for pure system and the CNT filled systems with different interactions \mathcal{E}_{np} .

Fig. S4 (a) The illustration of the transition state and the conformational state for the torsion angle φ_3 . Minimum of the energy curve is one of the t, g⁺, and g⁻ conformational state. W_{barrier} is the width of the barrier. (b) The ratio of the conformational transition rate at some strain to that at the strain=0.0 K(strain)/K(strain=0.0) for the deep jump with respect to the strain.

Fig. S5 (a) United atom models for cis-1,4-polybutadiene (PB); (b) Snapshots of pure system and the carbon nanotube (CNT) filled systems with different mass fractions of CNTs (f). The blue and red beads denote the PB chains, while the green beads denote the CNTs.

Fig. S6 The left axis denotes the maximum stress, while the right axis represents the tensile modulus with respect to the mass fraction of carbon nanotube (f).

(a)						
Bond stretching		k_b (Kcal·(mol·Å ²) ⁻¹)			r ₀ (Å)	
CH ₂ -CH ₂		331.5			1.54	
CH ₂ -CH		384.5			1.50	
СН=СН		516.5			1.34	
(b)						
Bond angle bending		k_{θ} (Kcal·mol ⁻¹)			$\theta_0(\text{deg})$	
CH ₂ -CH ₂ -CH		57.5			111.65	
CH ₂ -CH-CH		44.7			125.89	
(c)						
Torsion	k_1	<i>k</i> ₂	<i>k</i> ₃	k_4	k_5	k_6
	(Kcal· mol ⁻¹)	(Kcal· mol ⁻¹)	(Kcal· mol ⁻¹)	(Kcal· mol ⁻¹)	(Kcal· mol ⁻¹)	(Kcal· mol ⁻¹)
CH ₂ -CH=CH-CH ₂						
$arphi_1$	-	12.1	-	-	-	-
CH ₂ -CH ₂ -CH=CH						
$arphi_2$	0.5165	-0.236	0.2777	0.1315	0.173	0.082
CH-CH ₂ -CH ₂ -CH						
$arphi_3$	-0.444	0.3095	-1.8195	-0.033	-0.1235	-0.095
(d)						
Non-bonding		ε (Kcal·mol ⁻¹)		σ (Å)	r _{cutoff} (Å)	
CH ₂	CH_2	0.0936		4.009	10.023	
CH ₂	СН	0.1015		3.793	9.483	
СН	СН	0.1000		3.385	8.463	
CNT	CH_2	0.05-0.3 3.3		3.385	8.463	
CNT	СН	0.05-0.3 3.385		3.385	8.463	
CNT	CNT	0.1000		3.385	3.791	

Table SI The force-field parameters for the carbon nanotube filled polybutadiene model