Prediction of ¹H NMR Chemical Shifts for Ionic Liquids: Strategy and Application of Relative Reference Standard

Juanfang Wang, Ying Liu*, Wen Li, and Guanjun Gao

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot

010021, China

SUPPLEMENTARY INFORMATION

List of contents:

- Test set of ionic liquids	page S2
- Examples of the RRS approach	page S3–S4
- Boltzmann averaging	page S5–S9
- Calculation data of Table 1	page S10–S19
- Calculation data of Tables 2&3	page S20-S30
- Calculation of IL clusters	page S31-S35
- Cartesian coordinates of optimized ionic liquids	page S36-S73
- Effects of long alkyl chains on the prediction	page S74–S76
- Details of generalizing reference standard	page S77–S79
- Details on Case Study	page S80-S82

-- Test set of ionic liquids

1-butyl-3-methylimidazolium chloride $[C_4 mim]Cl$

1-butyl-3-methylimidazolium acetate [C4mim][OAc]

N N⁺ OH-

Hydroxide 1-butyl-3-methyl imidazolium [C₄mim]OH

N⁺-7 0⁵0-

1-butyl-3-methylimidazolium ethylsulphate [C₄mim][MeSO₄]

1-butyl-3-methyl imidazolium trifluoroacetate [C₄mim][TFA]

N-butyl-N-methylpyrrolidinium dicyanamide [P16][DCA]

1-methyl pyridine tetrafluoroborate [1-Me-py][BF₄]

1-Carboxymethyl-3-methylimidazol-3-ium Hydrogen Sulfate [CMI][HSO₄]

Figure S1. A test set of ionic liquids

1-butyl-3-methyl imidazolium tetrafluoroborate $[C_4 mim][BF_4]$

,F `F **N**⁺∽

1-butyl-3-methylimidazolium hexafluorophosphate $[C_4 mim][PF_6]$

$$N^{+} \xrightarrow{F} O O F$$

 $\label{eq:linear} \begin{array}{l} \mbox{1-butyl-3-methylimidazolium}\\ \mbox{bis(trifluoromethylsulfonyl)imide}\\ \mbox{[}C_4\mbox{mim][Tf}_2\mbox{N]} \end{array}$

,^{N⁺}~ O=`S Ó

1-butyl-3-methyl imidazolium toslayte [C₄mim][OTs]

ethanolamine acetate

pyridine Tetrafluoroborate [py][BF₄]

2-methyl pyridine tetrafluoroborate [2-Me-py][BF₄]

$$-N^+$$
 $N^ N^+$ $N^ NH_2$ $F^ F^-$

Amine 1-ethyl-3-methylimidazolium tetrafluoroborate [NH₂-Emim][BF4]

--Example of the RRS approach for the calculation of [C₄mim]Cl.

1-butyl-3-methylimidazolium chloride

Scheme S1. Structure of 1-Butyl-3-methylimidazolium Chloride and 1-Methylimidazole with Hydrogen Atoms Numbered.

(1) The organic molecule similar to the cation of the studied IL was used as the reference compound. In this case, 1-methlyimidozle was employed as a corresponding reference compound.

(2) The ¹H absolute magnetic shielding values of H2', H3', and H4' protons in
 1-methylimidazole ring were calculated at the certain level of theory.

(3) The shielding constants of $[C_4 mim]Cl$ with a single ion pair were calculated at the same level as the 1-methylimidazole calculations.

(4) Once the shielding constants were computed, the ¹H NMR chemical shifts can be calculated in accordance with the following equation:

 $\delta_{calc}^{\ x} = \sigma_{ref,x} - \sigma_x + \delta_{ref,x}$

(5) Where $\sigma_{\text{ref},x}$ and σ_x are the NMR isotropic magnetic shielding values. Generally, the *x* hydrogen atoms for the given molecule and for the reference compound have similar structure. And $\delta_{\text{ref},x}$ is the certain proton chemical shift of the reference compound in deuterated chloroform, which was taken from the Spectral Data Base for Organic Compounds (SDBS). For instance, the $\delta_{\text{calc}}^{\text{H2}}$ of [C₄mim]Cl would include the calculated values of $\sigma_{1-\text{methylimidazole,H2}}$, and $\sigma_{\text{[C_4mim]Cl},\text{H2}}$, and the experimental data of $\delta_{1-\text{methylimidazole,H2}}$.

(6) H3 and H4 calculations of $[C_4mim]Cl$ have the similar procedure of H2, but x in the equation should be replaced by H3 and H4, respectively. The $-CH_2-$ or $-CH_3$ hydrogens (H5–H8) in the $[C_4mim]^+$ cation were calculated by using TMS (δ =0.00 ppm) as the reference compound.

--Example of the RRS approach for the calculation of [C₄mim][BF₄].

Another example of the RRS approach exhibits as follows.

1-ethyl-3-methylimidazolium

Scheme S2. Structure of [C₄mim][BF₄] and [C₂mim][BF₄] with Hydrogen Atoms Numbered.

$\delta_{calc}^{x} = \sigma_{ref,x} - \sigma_{x} + \delta_{ref,x}$								
	$\sigma_{\mathrm{calc},\mathrm{x}}$	$\sigma_{ m ref,x}$	$\delta_{\mathrm{ref},\mathrm{x}}$	$\delta_{\mathrm{calc},\mathrm{x}}$ (RRS)	$\delta_{\mathrm{calc},\mathrm{x}}$ (TMS)	$\delta_{\exp,x}$	RRS	TMS
H2	22.525	22.864	8.55	8.89	9.03	8.77	0.118	0.259
Н3	23.791	23.862	7.35	7.42	7.76	7.63	0.208	0.133
H4	23.665	23.937	7.41	7.68	7.89	7.69	0.008	0.199
H1	27.715	27.520	4.14	3.95	3.84	4.04	0.094	0.200
Н5	27.351	27.574	3.84	4.06	3.98	4.32	0.257	0.339
H6	29.773	27.574	3.84	1.64	1.78	1.93	0.288	0.148
H7	30.0194	27.574	3.84	1.39	1.53	1.38	0.014	0.154
H8	30.4186	29.869	1.41	0.86	1.14	0.94	0.079	0.195
						RMS	0.167	0.214
						MAE	0.134	0.204

Herein, the reference compound is $[C_2mim][BF_4]$. $\sigma_{ref,x}$ and $\sigma_{calc,x}$ are the calculated magnetic shielding tensors of the reference compound and the studied IL, respectively. $\delta_{calc,x}$ and $\delta_{ref,x}$ are the calculated chemical shifts of the studied IL $[C_4mim][BF_4]$ and the experimental chemical shifts of $[C_2mim][BF_4]$, respectively.

According to the structure similarity, H1-H5 of $[C_4mim][BF_4]$ can be calculated through $\delta_{calc}^{x} = \sigma_{ref,x} - \sigma_x + \delta_{ref,x}$ directly. H6 and H7 of $[C_4mim][BF_4]$ cannot be directly calculated by the above equation due to the absence of H6 and H7 in $[C_2mim][BF_4]$. But they can be obtained by using the values of H5 in $[C_2mim][BF_4]$ because of their similar structures (-CH₂-). Meanwhile, H8 of $[C_4mim][BF_4]$ can be calculated through H6 of $[C_2mim][BF_4]$ for their similar structures.

--Boltzmann averaging

The Boltzmann distribution is generally defined as below.

$$P_{i} = \frac{n_{i}}{\sum n_{j}} = \frac{e^{-G_{i}/RT}}{\sum e^{-G_{j}/RT}} = \frac{Q_{i}}{Q_{j}}$$
Eq. 1

Furthermore, the equation 1 is mathematically equivalent to the equation 3 for calculating the Boltzmann distribution (probability) of the *i*-th configuration of the IL.

$$e^{-G_i/RT} = e^{-(\Delta G_i + G_{Referece})/RT} = Ce^{-\Delta G_i/RT}$$
Eq. 2

$$P_{i} = \frac{n_{i}}{\sum n_{j}} = \frac{e^{-\Delta G_{j}/RT}}{\sum e^{-\Delta G_{j}/RT}} = \frac{Q_{i(Relative)}}{Q_{(Relative)}}$$
Eq. 3

In addition, Boltzmann averaging is defined as:

$$\delta_{obs} = \sum_{i} P_i \delta_i$$

Eq. 4

Where ΔG_i is the free energy difference between the *i*-th configuration and the configuration with the minimal energy.

Boltzmann averaging for [C₄mim][BF₄] configurations

Figure S2. Four energetically preferred configurations of [C₄mim][BF₄]

Table S1. Boltzmann Distribution of Configurations for the IL [C₄mim][BF₄] at 298 K

Temperature (K)	298.15	Q _(Relative)	1.452892
Configuration index	ΔΕ	Q _{i(Relative)}	Percent
3	0	1	68.83%
2	0.469	0.453	31.17%
1	10.238	0.000000	0.00%
4	21.027	0.000000	0.00%

Table S2. Calculated Proton Chemical Shifts for Different Configurations of $[C_4mim][BF_4]^a$

Configuration	$\sigma_{ m calc,x}$	$\delta_{\mathrm{calc},\mathrm{x}}(\mathrm{TMS})$	$\delta_{ ext{exp,x}}$	absolute errors
Configuration 3				
H2	22.823	8.731	8.77	0.039
H3	23.885	7.669	7.63	0.039
H4	23.731	7.823	7.69	0.133
H1	27.521	4.034	4.04	0.006
Н5	27.548	4.006	4.32	0.314
Н6	29.782	1.772	1.93	0.158
H7	30.179	1.376	1.38	0.004
H8	30.394	1.161	0.94	0.221
			RMS	0.155
			MAE	0.114
Configuration 2				
H2	23.060	8.494	8.77	0.276
H3	23.842	7.713	7.63	0.083
H4	23.744	7.811	7.69	0.121
H1	27.505	4.050	4.04	0.010

H5	27.612	3.942	4.32	0.378	
H6	29.891	1.664	1.93	0.266	
H7	30.236	1.319	1.38	0.061	
H8	30.208	1.346	0.94	0.406	
			RMS	0.245	
			MAE	0.200	
Boltzmann averaging					
H2	22.897	8.657	8.77	0.113	
Н3	23.871	7.683	7.63	0.053	
H4	23.735	7.820	7.69	0.130	
H1	27.516	4.039	4.04	0.001	
Н5	27.568	3.986	4.32	0.334	
H6	29.816	1.738	1.93	0.192	
H7	30.196	1.358	1.38	0.022	
H8	30.336	1.219	0.94	0.279	
			RMS	0.179	
			MAE	0.140	

^{*a*} **m06-2x/aug-cc-pvdz** functional basis was used for geometry optimization and ¹H NMR calculations; reference compound was TMS.

Figure S3. Four energetically preferred configurations of $[C_4mim][NTf_2]$

Temperature (K)	298.15	Q _(Relative)	2.307
Configuration index	ΔΕ	Q _{i(Relative)}	Percent
3	0	1	43.33%
1	0.035	0.943	40.88%
2	0.598	0.364	15.78%
4	7.062	6.608E-06	0.0003%

Table S3. Boltzmann Distribution of Configurations for $[C_4mim][NTf_2]$ at 298 K

Table S4. Calculated Proton (Chemical Shifts for	Different	Configurations o)f
[C ₄ mim][NTf ₂] ^{<i>a</i>}				

Configuration	$\sigma_{ m calc,x}$	$\delta_{\text{calc},x}$ (TMS)	$\delta_{ ext{exp,x}}$	absolute errors
Configuration 3				
H2	19.834	11.720	8.63	3.090
Н3	23.562	7.992	7.54	0.452
H4	23.784	7.770	7.46	0.310
H1	27.356	4.198	4.24	0.042
Н5	27.080	4.475	3.96	0.515
Н6	29.962	1.593	1.92	0.327
H7	30.216	1.338	1.40	0.062
H8	30.330	1.224	0.97	0.254
			RMS	1.134
			MAE	0.632
Configuration 1				
H2	19.834	11.721	8.63	3.091
Н3	23.558	7.996	7.54	0.456
H4	23.785	7.769	7.46	0.309
H1	27.365	4.189	4.24	0.051
Н5	27.082	4.472	3.96	0.512
H6	29.960	1.595	1.92	0.325
H7	30.217	1.337	1.40	0.063
H8	30.330	1.224	0.97	0.254
			RMS	1.134
			MAE	0.633
Configuration 2				
H2	19.841	11.714	8.63	3.084
Н3	23.691	7.863	7.54	0.323
H4	23.546	8.008	7.46	0.548
H1	27.248	4.306	4.24	0.066
Н5	27.062	4.493	3.96	0.533
H6	29.890	1.664	1.92	0.256

H7	30.249	1.306	1.40	0.095
H8	30.294	1.261	0.97	0.291
			RMS	1.138
			MAE	0.649
Boltzmann averagi	ng			
H2	19.833	11.722	8.63	3.092
Н3	23.579	7.976	7.54	0.436
H4	23.745	7.810	7.46	0.350
H1	27.340	4.214	4.24	0.026
Н5	27.075	4.479	3.96	0.519
H6	29.947	1.608	1.92	0.312
H7	30.219	1.336	1.40	0.065
H8	30.321	1.233	0.97	0.263
			RMS	1.135
			MAE	0.633
^a m06-2x/aug-cc-p	vdz functional basis was	used for geometry opti	imization and ¹ H NM	R calculations; reference

compound was TMS.

--Calculation data of Table 1

Figure S4. Structure of [C₄mim]Cl

Table S5. Calculate	d ¹ H NMR (Chemical	Shifts of	[C ₄ mim]	Cl
---------------------	------------------------	----------	-----------	----------------------	----

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	19.162	23.567	7.385	11.790	12.530	8.630	3.160	3.900
H3	24.077	24.053	7.011	7.035	7.616	7.540	0.505	0.076
H4	23.975	24.000	6.863	6.888	7.718	7.460	0.572	0.258
H1	27.779	27.919	3.641	3.782	3.914	4.240	0.459	0.326
H5	27.144				4.549	3.960		0.589
H6	30.037				1.656	1.920		0.264
H7	30.345				1.347	1.400		0.053
H8	32.154				0.462	0.970		0.508
referer	nce compound	d: 1-methylin	nidazole		RMS, p	opm	1.197	1.417
level of theory: mp2/aug-cc-pvdz			MAE, p	opm	0.764	0.747		

Figure S5. Structure of [C₄mim][BF₄]

Table S6. Calculated	¹ H NMR Che	emical Shifts	of [C	₄mim]	[BF₄]	I
-----------------------------	------------------------	---------------	-------	-------	-------	---

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ ext{exp}}$	AE (RRS)	AE (TMS)
H2	21.892	23.567	7.385	9.060	9.801	8.630	0.430	1.171
H3	24.357	24.053	7.011	7.315	7.336	7.540	0.225	0.204
H4	24.323	24.000	6.863	7.187	7.370	7.460	0.273	0.090
H1	27.810	27.919	3.641	3.750	3.882	4.240	0.490	0.358
H5	28.532				3.161	3.960		0.799
H6	30.158				1.535	1.920		0.385
H7	30.661				1.032	1.400		0.368
H8	30.878				0.814	0.970		0.156
referen	erence compound: 1-methylimidazole				RMS, p	opm	0.371	0.558
level o	of theory: mp	2/aug-cc-pvd	z		MAE, p	opm	0.354	0.441

Figure S6. Structure of [C₄mim][OAc]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	17.735	23.661	7.385	13.311	13.819	10.18	3.131	3.639
H3	23.816	23.832	7.011	7.027	7.738	7.880	0.853	0.142
H4	23.709	23.758	6.863	6.912	7.845	7.960	1.048	0.115
H1	27.298	27.653	3.641	3.996	4.256	4.200	0.204	0.056
Н5	26.954	27.653	3.641	4.341	4.601	3.890	0.451	0.711
H6	29.882	27.653	3.641	1.412	1.672	1.600	0.188	0.072
H7	30.178	27.653	3.641	1.116	1.376	1.210	0.094	0.166
H8	30.422	27.653	3.641	0.872	1.132	0.840	0.032	0.292
reference compound: 1-methylimidazole			RMS, J	opm	1.221	1.318		
level o	of theory: m0	6-2x/aug-cc-j	pvdz		MAE, j	opm	0.750	0.649

Table S7. Calculated ¹H NMR Chemical Shifts of [C₄mim][OAc]

Figure S7. Structure of [C₄mim][PF₆]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	22.952	23.661	7.385	8.094	8.603	8.520	0.426	0.083
H3	23.677	23.832	7.011	7.166	7.878	7.490	0.324	0.388
H4	23.737	23.758	6.863	6.884	7.817	7.520	0.636	0.297
H1	27.432	27.653	3.641	3.862	4.123	4.250	0.388	0.127
Н5	27.193	27.653	3.641	4.101	4.362	3.970	0.131	0.392
H6	29.604	27.653	3.641	1.690	1.950	1.930	0.240	0.020
H7	30.634	27.653	3.641	0.660	0.920	1.380	0.720	0.460
H8	30.463	27.653	3.641	0.831	1.091	0.940	0.109	0.151
reference compound: 1-methylimidazole			RMS, p	opm	0.425	0.285		
level o	of theory: m0	6-2x/aug-cc-j	pvdz		MAE, p	opm	0.372	0.240

Table S8. Calculated ¹H NMR Chemical Shifts of [C₄mim][PF₆]

Figure S8. Structure of [C₄mim]OH

Table S9. Calculated	¹ H NMR Chemical	Shifts of	[C ₄ mim]OH
----------------------	-----------------------------	-----------	------------------------

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	23.661	24.614	7.385	8.338	7.893	9.270	0.932	1.377
H3	23.779	23.832	7.011	7.064	7.775	7.820	0.756	0.045
H4	23.742	23.758	6.863	6.879	7.812	7.750	0.871	0.062
H1	27.325	27.653	3.641	3.969	4.229	4.200	0.231	0.029
H5	27.564	27.653	3.641	3.730	3.990	3.860	0.130	0.130
H6	30.093	27.653	3.641	1.201	1.461	1.780	0.579	0.319
H7	30.189	27.653	3.641	1.105	1.365	1.250	0.145	0.115
H8	30.419	27.653	3.641	0.875	1.136	0.900	0.025	0.236
referen	reference compound: 1-methylimidazole			RMS, p	opm	0.573	0.511	
level c	of theory: m0	6-2x/aug-cc-j	ovdz		MAE, p	opm	0.459	0.289

Figure S9. Structure of [C₄mim][Tf₂N]

Table S10. Calculated ¹H NMR Chemical Shifts of [C₄mim][Tf₂N]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	19.834	23.661	7.385	11.212	11.720	8.630	2.582	3.090
Н3	23.562	23.832	7.011	7.281	7.992	7.540	0.259	0.452
H4	23.784	23.758	6.863	6.837	7.770	7.460	0.623	0.310
H1	27.356	27.678	3.641	3.963	4.198	4.240	0.277	0.042
Н5	27.080			4.475	4.475	3.960	0.515	0.515
H6	29.962			1.593	1.593	1.920	0.327	0.327
H7	30.216			1.338	1.338	1.400	0.062	0.062
H8	30.330			1.224	1.224	0.970	0.254	0.254
reference compound: 1-methylimidazole			RMS, p	opm	0.977	1.134		
level of theory: m06-2x/aug-cc-pvdz			MAE, J	opm	0.612	0.632		

Figure S10. Structure of [C₄mim][MeSO₄]

Tab	ole S11.	Calculated	¹ H NMR	Chemical	Shifts of [C ₄ mim	1][MeSO4]	
н	σ.	σ	δι	$\delta_{\rm e}$ (RRS)	$\delta_{\rm el}({\rm TMS})$	δ	AF (RRS)	Δ

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ ext{exp}}$	AE (RRS)	AE (TMS)
H2	20.987	23.661	7.385	10.059	10.567	9.418	0.641	1.149
Н3	23.831	23.832	7.011	7.012	7.723	7.630	0.618	0.093
H4	23.681	23.758	6.863	6.940	7.874	7.580	0.640	0.294
H1	27.482	27.653	3.641	3.812	4.072	4.260	0.448	0.188
Н5	27.232	27.653	3.641	4.062	4.323	3.370	0.692	0.953
H6	29.986	27.653	3.641	1.308	1.568	1.881	0.573	0.313
H7	30.113	27.653	3.641	1.181	1.441	1.352	0.171	0.089
H8	30.410	27.653	3.641	0.884	1.144	0.935	0.051	0.209
referer	ference compound: 1-methylimidazole			RMS, p	pm	0.530	0.560	
level o	f theory: m0	6-2x/aug-cc-j	ovdz		MAE, p	opm	0.479	0.411

Figure S11. Structure of [C₄mim][OTS]

1 40		ilculateu						
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	23.735	23.661	7.385	7.311	7.887	8.530	1.219	0.643
H3	24.339	23.832	7.011	6.504	7.284	7.660	1.156	0.376
H4	24.088	23.758	6.863	6.533	7.534	7.290	0.757	0.244
H1	28.291	27.653	3.641	3.003	3.331	4.020	1.017	0.689
H5	27.714	27.653	3.641	3.580	3.909	3.780	0.200	0.128
H6	29.546	27.653	3.641	1.748	2.076	1.710	0.038	0.366
H7	30.058	27.653	3.641	1.236	1.564	1.220	0.016	0.344
H8	30.463	27.653	3.641	0.831	1.159	0.870	0.039	0.289
refere	nce compoun	d: 1-methylir	nidazole		RMS, p	opm	0.748	0.424
level o	of theory: b3l	yp/6-31++g(d,p)-d3		MAE, p	opm	0.555	0.385

Table S12. Calculated	¹ H NMR Chemical Shifts	of [C ₄ mim][OTS]
-----------------------	------------------------------------	------------------------------

Figure S12. Structure of [C₄mim][TFA]

1 av	it 515. Ca	iiculaticu						
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	19.041	23.661	7.385	12.005	12.513	8.670	3.335	3.843
Н3	24.257	23.832	7.011	6.586	7.297	7.430	0.844	0.133
H4	24.154	23.758	6.863	6.467	7.401	7.390	0.923	0.011
H1	27.841	27.653	3.641	3.453	3.713	4.140	0.687	0.427
Н5	27.554	27.653	3.641	3.740	4.000	3.850	0.110	0.150
Н6	29.850	27.653	3.641	1.444	1.704	1.790	0.346	0.086
H7	30.164	27.653	3.641	1.130	1.390	1.260	0.130	0.130
H8	30.596	27.653	3.641	0.698	0.959	0.860	0.162	0.099
refere	nce compoun	d: 1-methylir	nidazole		RMS, p	opm	1.291	1.370
level o	of theory: b3l	yp/6-31++g(d,p)-d3		MAE, p	opm	0.817	0.610

Table S13. Calculated ¹ H NMR Chemical Shifts of [C ₄ mim][TFA]

Figure S13. Structure of *N*-hexyl-*N*-methylpyrrolidinium dicyanamide ([P16][DCA], left) and pyrrole (right)

Н	$\sigma_{\rm cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal} ({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	27.649	23.891	6.737	2.979	3.889	3.450	0.471	0.439
H2	27.629	23.891	6.737	3.000	3.910	3.450	0.450	0.460
Н3	29.180	24.442	6.235	1.497	2.358	2.080	0.583	0.278
H4	29.007	24.442	6.235	1.670	2.532	2.080	0.410	0.452
Н5	28.238			3.317	3.301	2.980	0.337	0.321
H6	28.547			3.007	2.991	3.290	0.283	0.299
H7	30.007			1.547	1.532	1.680	0.133	0.148
H8	30.383			1.171	1.155	1.310	0.139	0.155
H9	30.241			1.314	1.298	0.880	0.434	0.418
refere	nce compoun	d: pyrrole		RMS, p	opm	0.387	0.350	
level o	of theory: m0	6-2x/aug-cc-j	pvdz	MAE, p	opm	0.360	0.330	

 Table S14. Calculated ¹H NMR Chemical Shifts of N-hexyl-N-methylpyrrolidinium Dicyanamide ([P16][DCA])

Figure S14. Structure of pyridinium tetrafluoroborate ([Py][BF₄], left) and pyridine (right)

					L	V J L	•,	
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	22.886	23.369	8.59	9.075	9.771	8.71	0.365	1.061
H2	24.424	24.864	7.23	7.672	8.233	8.06	0.389	0.173
H3	23.185	24.055	7.62	8.487	9.472	8.62	0.133	0.852
H4	17.037			15.620	15.620	13.09	2.530	2.530
referen	nce compound	1: pyridine			RMS, p	opm	1.295	1.439
level c	of theory: HF/	631G(d)			MAE, p	opm	0.854	1.154

Table S15. Calculated ¹H NMR Chemical Shifts of [Py][BF₄]

Figure S15. Structure of 1-methyl-pyridinium tetrafluoroborate ([1-me-Py][BF₄], left) and pyridine (right)

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	23.192	22.713	8.710	8.231	8.430	8.640	0.409	0.210
H2	23.520	23.832	8.060	8.372	8.103	8.010	0.362	0.093
Н3	23.079	23.428	8.620	8.969	8.543	8.490	0.479	0.053
H4	27.249			4.373	4.373	4.310	0.063	0.063
referen	nce compound	1: pyridine			RMS, p	pm	0.365	0.122
level o	f theory: b3ly	yp/6-31++g(d	,p)-d3	MAE, p	opm	0.328	0.105	

Table S16. Calculated ¹ H	H NMR (Chemical Shifts	of l	[1-me-Pv]	ſBF₄	1
--------------------------------------	---------	-----------------	------	-----------	------	---

--Calculation data of Tables 2&3

1-butyl-3-methylimidazolium

1-ethyl-3-methylimidazolium

Table S17. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) for the $[C_4mim]^+$ -based IL Chemical Shifts Using the Modification of RRS Approach.

[C ₄ mi	$[PF_6]$							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	24.192	24.209	8.820	8.837	8.390	8.520	0.317	0.130
Н3	25.620	25.647	7.240	7.267	6.963	7.520	0.253	0.557
H4	25.633	25.654	7.290	7.311	6.949	7.490	0.179	0.541
H1	28.659	28.678	4.260	4.279	3.924	3.970	0.309	0.046
Н5	28.591	28.578	3.970	3.983	3.991	4.250	0.267	0.259
H6	30.892	30.984	1.590	1.683	1.691	1.930	0.247	0.239
H7	31.701				0.882	1.380		0.498
H8	31.780				0.802	0.940		0.138
Refer	ence Compou	nd: [C ₂ mim][PF ₆]	RMS, p	opm	0.266	0.356	
level	of theory: wp	04/6-31+g(d)			MAE, J	opm	0.262	0.301
[C ₄ mi	$[PF_6]$							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	22.569	22.848	8.820	9.099	9.054	8.520	0.579	0.534
H3	24.103	24.179	7.290	7.366	7.519	7.490	0.124	0.029
H4	24.094	24.078	7.240	7.224	7.529	7.520	0.296	0.009
H1	27.606	27.650	4.260	4.304	4.017	4.250	0.054	0.233
H5	27.427	27.459	3.970	4.003	4.196	3.970	0.032	0.226
H6	29.865	30.104	1.590	1.829	1.757	1.930	0.101	0.173
H7	30.489	30.104	1.590	1.205	1.134	1.380	0.175	0.246
H8	30.597	30.104	1.590	1.096	1.025	0.940	0.156	0.085
Refer	ence Compou	nd: [C ₂ mim][PF ₆]		RMS, p	opm	0.252	0.247
level	of theory: b3l	yp/6-31++g(d	1,p)-d3		MAE, j	opm	0.190	0.192
[C ₄ mi	$[PF_6]$							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	δ_{exp}	AE (RRS)	AE (TMS)
H2	22.952	22.010	8.820	7.879	8.603	8.520	0.641	0.083
H3	23.677	23.860	7.290	7.474	7.878	7.490	0.016	0.388
H4	23.737	23.655	7.240	7.158	7.817	7.520	0.362	0.297
H1	27.432	27.665	4.260	4.494	4.123	4.250	0.244	0.127
H5	27.193	27.378	3.970	4.156	4.362	3.970	0.186	0.392
H6	29.604	29.844	1.590	1.830	1.950	1.930	0.100	0.020
H7	30.634	29.844	1.590	0.800	0.920	1.380	0.580	0.460
H8	30.463	29.844	1.590	0.971	1.091	0.940	0.031	0.151

Refer	ence Compou	nd: [C ₂ mim][PF ₆]		RMS, p	opm	0.351	0.285
level	of theory: m0	62x/aug-cc-p	vdz		MAE, j	opm	0.270	0.240
[C ₄ mi	m][MeSO ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	23.086	23.079	9.440	9.432	9.496	9.310	0.122	0.186
Н3	25.649	25.630	7.620	7.640	6.933	8.000	0.360	1.067
H4	25.672	25.636	7.620	7.656	6.910	7.920	0.264	1.010
H1	28.552	28.533	4.330	4.350	4.030	4.140	0.210	0.110
Н5	28.430	28.275	4.030	4.185	4.152	4.420	0.235	0.268
Н6	31.145	30.335	1.280	2.089	1.437	1.950	0.139	0.513
H7	31.397				1.185	1.370		0.185
H8	31.699				0.883	0.930		0.047
Refer	ence Compou	nd: [C ₂ mim][EtSO ₄]		RMS, p	opm	0.236	0.567
level	of theory: wp	04/6-31+g(d)			MAE, j	opm	0.222	0.423
[C ₄ mi	m][MeSO ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{cal}(TMS)$	$\delta_{ ext{exp}}$	AE (RRS)	AE (TMS)
H2	21.587	21.298	9.440	9.151	10.036	9.418	0.267	0.618
Н3	24.225	24.195	7.620	7.590	7.397	7.630	0.040	0.233
H4	24.126	24.079	7.620	7.573	7.497	7.580	0.007	0.084
H1	27.753	27.670	4.330	4.247	3.869	4.260	0.013	0.391
Н5	26.601	26.168	4.030	3.597	5.455	3.370	0.227	2.085
Н6	29.860	30.183	1.280	1.603	1.762	1.881	0.278	0.119
H7	30.094	30.183	1.280	1.370	1.529	1.352	0.018	0.177
H8	30.623	30.183	1.280	0.841	1.000	0.935	0.094	0.065
Refer	ence Compou	nd: [C ₂ mim][[EtSO ₄]		RMS, p	opm	0.162	0.790
level	of theory: b3l	yp/6-31++g(1,p)-d3		MAE, ppm 0.118			0.471
[C ₄ mi	m][MeSO ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	20.987	20.697	9.440	9.149	10.512	9.418	0.269	1.094
Н3	23.831	23.740	7.620	7.528	7.668	7.630	0.102	0.038
H4	23.681	23.599	7.620	7.538	7.818	7.580	0.042	0.238
H1	27.482	27.506	4.330	4.354	4.016	4.260	0.094	0.244
Н5	27.232	26.823	4.030	3.621	4.267	3.370	0.251	0.897
H6	29.986	29.998	1.280	1.291	1.512	1.881	0.590	0.369
H7	30.113	29.998	1.280	1.164	1.386	1.352	0.188	0.034
H8	30.410	29.998	1.280	0.868	1.089	0.935	0.067	0.154
Refer	ence Compou		RMS, p	opm	0.261	0.534		
level	level of theory: m062x/aug-cc-pvdz				MAE, j	opm	0.200	0.383
[C4mi	$[C_4 mim][BF_4]$							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	24.144	24.102	8.550	8.508	8.438	8.770	0.262	0.332
H3	26.699	25.689	7.350	8.359	5.884	7.690	0.669	1.806
H4	25.697	25.681	7.410	7.426	6.885	7.630	0.204	0.745

H1	28 402	28 680	4 140	4 4 1 8	4 180	4 040	0 378	0 140
H5	28.424	28.564	3 830	3 970	4.158	4 320	0.350	0.140
H6	30.617	30.972	1 410	1 765	1 965	1 930	0.165	0.035
H7	31.123	00072		1., 00	1.459	1.380	0.100	0.079
H8	31.377				1.205	0.940		0.265
Refer	ence Compou	nd: [C2mim][BF₄]		RMS. r	pm	0.377	0.712
level	of theory: wp0	4/6-31+G(d)	-1		MAE, r	pm	0.338	0.446
[C ₄ mi	m][BF ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	δ_{exp}	AE (RRS)	AE (TMS)
H2	22.058	22.050	8.550	8.542	9.565	8.770	0.228	0.795
H3	24.183	24.210	7.350	7.377	7.440	7.630	0.253	0.190
H4	24.109	24.132	7.410	7.434	7.514	7.690	0.256	0.176
H1	27.728	27.727	4.140	4.139	3.894	4.040	0.099	0.146
Н5	26.565	26.761	3.840	4.037	5.058	4.320	0.284	0.738
H6	29.780	30.177	1.410	1.806	1.842	1.930	0.124	0.088
H7	30.123	30.177	1.410	1.464	1.500	1.380	0.084	0.119
H8	30.616	30.177	1.410	0.970	1.006	0.940	0.030	0.066
Refer	ence Compou	nd: [C ₂ mim][$BF_4]$		RMS, p	pm	0.192	0.402
level	of theory: b3l	yp/6-31++g(d	l,p)-d3		MAE, p	opm	0.170	0.290
[C ₄ mi	m][BF ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	22.525	22.864	8.550	8.889	9.030	8.770	0.119	0.260
H3	23.791	23.862	7.350	7.421	7.764	7.630	0.209	0.134
H4	23.665	23.937	7.410	7.682	7.890	7.690	0.008	0.200
H1	27.715	27.520	4.140	3.945	3.839	4.040	0.095	0.201
H5	27.351	27.574	3.840	4.063	3.981	4.320	0.257	0.339
H6	29.773	27.574	3.840	1.641	1.782	1.930	0.289	0.148
H7	30.019	27.574	3.840	1.394	1.535	1.380	0.014	0.155
H8	30.419	29.869	1.410	0.860	1.136	0.940	0.080	0.196
Refer	ence Compou	nd: [C ₂ mim][BF ₄]		RMS, p	pm	0.167	0.214
level	of theory: m0	62x/aug-cc-p	vdz		MAE, p	opm	0.134	0.204
[C ₄ mi	m][OTs]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	23.735	23.662	8.590	8.517	7.887	8.530	0.013	0.643
H3	24.339	24.380	7.700	7.742	7.284	7.660	0.082	0.376
H4	24.088	24.093	7.370	7.375	7.534	7.290	0.085	0.244
H1	28.291	28.358	4.160	4.227	3.331	4.020	0.207	0.689
H5	27.714	27.537	3.830	3.653	3.909	3.780	0.127	0.128
H6	29.546	29.961	1.470	1.885	2.076	1.710	0.175	0.366
H7	30.058	29.961	1.470	1.373	1.564	1.220	0.153	0.344
H8	30.463	29.961	1.470	0.968	1.159	0.870	0.098	0.289
Refer	ence Compou	nd: [C ₂ mim][OTs]	RMS, p	pm	0.131	0.424	
level	of theory: b3l	yp/6-31++g(d	l,p)-d3		MAE, p	pm	0.117	0.385

$[C_4 mim][OAC]$									
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	δ_{exp}	AE (RRS)	AE (TMS)	
H2	17.459	17.470	9.890	9.901	14.164	10.18	0.279	3.984	
H3	24.265	24.297	7.880	7.912	7.358	7.880	0.032	0.522	
H4	24.195	24.268	7.780	7.852	7.427	7.960	0.108	0.533	
H1	27.745	27.751	4.210	4.216	3.878	4.200	0.016	0.323	
Н5	24.876	24.843	3.860	3.827	6.747	3.890	0.063	2.857	
H6	29.882	30.256	1.390	1.765	1.741	1.600	0.165	0.141	
H7	30.178	30.256	1.390	1.468	1.444	1.210	0.258	0.234	
H8	30.594	30.256	1.390	1.052	1.028	0.840	0.212	0.188	
Refer	ence Compou	nd: [C ₂ mim][OAC]		RMS, p	opm	0.171	1.761	
level	of theory: b3l	yp/6-31++g(d	l,p)-d3		MAE, p	opm	0.142	1.098	
[C ₄ m	im][OAC]								
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ ext{exp}}$	AE (RRS)	AE (TMS)	
Н2	17 735	17 798	9 890	9 953	13 819	10.18	0 227	3 639	
	17.755	17.790	9.090	7.755	15.017	0	0.227	5.057	
H3	23.816	23.786	7.880	7.850	7.738	7.880	0.030	0.142	
H4	23.709	23.746	7.780	7.817	7.845	7.960	0.144	0.115	
H1	27.298	27.306	4.210	4.218	4.256	4.200	0.018	0.056	
Н5	26.954	26.918	3.860	3.824	4.601	3.890	0.066	0.711	
H6	29.882	29.995	1.390	1.503	1.672	1.600	0.097	0.072	
H7	30.178	29.995	1.390	1.207	1.376	1.210	0.003	0.166	
H8	30.422	29.995	1.390	0.962	1.132	0.840	0.122	0.292	
Refer	ence Compou	nd: [C ₂ mim][OAC]		RMS, p	opm	0.113	1.318	
level	of theory: m0	62x/aug-cc-p	vdz		MAE, p	opm	0.088	0.649	
[C ₄ m	im][TFA]								
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ ext{exp}}$	AE (RRS)	AE (TMS)	
H2	19.041	19.101	8.810	8.870	12.513	8.670	0.200	3.843	
H3	24.257	24.238	7.580	7.561	7.297	7.430	0.131	0.133	
H4	24.154	24.133	7.510	7.490	7.401	7.390	0.100	0.011	
H1	27.841	27.699	4.310	4.168	3.713	4.140	0.028	0.427	
H5	27.554	27.303	3.980	3.729	4.000	3.850	0.121	0.150	
H6	29.850	30.175	1.280	1.604	1.704	1.790	0.186	0.086	
H7	30.164	30.175	1.280	1.291	1.390	1.260	0.031	0.130	
H8	30.596	30.202	1.280	0.886	0.959	0.860	0.026	0.099	
Refer	Reference Compound: [C ₂ mim][TFA]					opm	0.122	1.370	
level	of theory: b3l	yp/6-31++g(d	l,p)-d3		MAE, p	opm	0.103	0.610	

Figure S16. Structure of Amine 1-ethyl-3-methylimidazolium tetrafluoroborate ([NH₂-emim][BF₄], left) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C₂mim][BF4], right)

Table S18. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the [NH₂-emim][BF₄] Chemical Shifts Using the Modification of RRS Approach.

[NH ₂ -	[NH ₂ -emim][BF ₄]									
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)		
H2	22.864	23.204	8.550	8.890	8.759	9.120	0.230	0.361		
H3	23.858	23.937	7.350	7.429	7.765	7.450	0.021	0.315		
H4	23.844	23.862	7.410	7.428	7.778	7.200	0.228	0.578		
H1	27.520	27.434	4.140	4.054	4.102	3.720	0.334	0.382		
H5	27.389	29.869	1.410	3.890	4.233	3.410	0.480	0.823		
H6	28.570	29.869	1.410	2.710	3.053	2.770	0.060	0.283		
H7	30.849	29.869	1.410	0.430	0.773	2.070				
Refere	ence Compou	nd: [C ₂ mim][]	BF ₄]	RMS, p	pm	0.274	0.495			
level o	level of theory: m062x/aug-cc-pvdz					opm	0.225	0.457		

Figure S17. Structure of 1-methyl-pyridinium tetrafluoroborate ([1-me-Py][BF₄], left) and pyridinium tetrafluoroborate ([Py][BF₄],right)

Table S19. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the [1-me-Py][BF₄] Chemical Shifts Using the Modification of RRS Approach.

[1-me-	[1-me-Py][BF ₄]									
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)		
H1	23.341	23.486	8.710	8.570	8.871	8.640	0.0743	0.231		
H2	24.517	24.371	8.060	8.210	7.695	8.010	0.196	0.315		
H3	23.986	23.779	8.620	8.410	8.227	8.490	0.0766	0.263		
H4	27.796			4.420	4.416	4.310	0.106	0.106		
Refere	nce Compour	nd: [Py][BF ₄]			RMS, ppm		0.124	0.241		
level of	f theory: wp0	4/6-31+G(d)		MAE, p	opm	0.113	0.229			
[1-me-Py][BF ₄]										
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)		
H1	23.192	22.747	8.710	8.265	8.430	8.640	0.375	0.210		
H2	23.520	23.287	8.060	7.828	8.103	8.010	0.183	0.093		
H3	23.079	22.667	8.620	8.208	8.543	8.490	0.282	0.053		
H4	27.249			4.373	4.373	4.310	0.063	0.063		
Reference Compound: [Py][BF ₄] RM						pm	0.254	0.122		
level of	level of theory: b3lyp/6-31++g(d,p)-d3 MAE, ppm 0.226 0.105									

Figure S18. Structure of 2-methyl-pyridinium tetrafluoroborate ([2-me-Py][BF₄], left) and pyridinium tetrafluoroborate ([Py][BF₄],right)

Table S20. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the [2-me-Py][BF4] Chemical Shifts Using the Modification of RRS Approach.

[2-me-	[2-me-Py][BF ₄]									
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)		
H1	18.209	17.755	13.09	12.64	14.003	12.42	0.2156	1.583		
H2	23.332	23.486	8.710	8.560	8.881	8.540	0.016	0.341		
Н3	24.588	24.371	8.060	7.840	7.625	7.850	0.0066	0.225		
H4	23.997	23.779	8.620	8.400	8.216	8.450	0.048	0.234		
H5	29.541			2.670	2.671	2.750	0.0788	0.0788		
Refere	nce Compour	nd: [Py][BF ₄]			RMS, p	pm	0.105	0.740		
level o	f theory: wp(04/6-31+G(d))		MAE, p	opm	0.0729	0.493		
[2-me-	Py][BF ₄]									
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)		
H1	22.621	22.747	8.710	8.584	9.001	8.540	0.044	0.461		
H2	23.633	23.287	8.060	7.715	7.990	7.850	0.135	0.140		
H3	23.067	22.667	8.620	8.220	8.555	8.450	0.230	0.105		
H4	18.110	17.495	13.090	12.48	13.513	12.42	0.056	1.093		
Н5	28.821			2.801	2.801	2.750	0.051	0.051		
Reference Compound: [Py][BF ₄]					RMS, p	pm	0.126	0.537		
level of theory: b3lyp/6-31++g(d,p)-d3 MA						opm	0.103	0.370		

Figure S19. Structure of N-butyl-N-methylpyrrolidinium dicyanamide (P16-DCA, left) and N-Ethyl-N-methylpyrrolidinium dicyanamide (P12-DCA, right)

Table S21. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the P16-DCA Chemical Shifts Using the Modification of RRS Approach.

P16-D	P16-DCA									
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)		
H1	27.949	27.897	3.420	3.368	3.605	3.450	0.082	0.155		
H2	27.746	28.039	3.420	3.714	3.809	3.450	0.264	0.359		
Н3	29.585	29.579	2.070	2.065	1.970	2.080	0.016	0.111		
H4	29.278	29.240	2.070	2.032	2.276	2.080	0.048	0.196		
Н5	28.541	28.463	2.950	2.873	3.014	2.980	0.107	0.034		
H6	28.609	28.482	3.360	3.234	2.946	3.290	0.056	0.344		
H7	29.910	30.284	1.270	1.644	1.644	1.680	0.036	0.036		
Refere	nce Compou	nd: P12-DCA		RMS, p	pm	0.107	0.192			
level o	level of theory: b3lyp/6-31++g(d,p)-d3 MAE, ppm 0.081 0.151									

Figure S20. Structure of 1-Carboxymethyl-3-methylimidazol-3-ium Hydrogen Sulfate ([CMI][HSO₄], left) and 1-Ethyl-3-methylimidazolium Hydrogen Sulfate ([EMIM][HSO₄],right)

Table S22. Mean Absolute Errors (MAE) and Root Mean Square Deviations	ŝ
(RMS) of the [CMI][HSO ₄] Chemical Shifts Using the Modification of RRS	
Approach.	

[CMI]	[HSO ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	23.3413	23.4856	8.71	8.57	8.8711	8.64	0.0743	0.2311
H2	24.5172	24.3711	8.06	8.21	7.6952	8.01	0.1962	0.3148
H3	23.9858	23.7792	8.62	8.41	8.2266	8.49	0.0766	0.2634
H4	27.7964			4.42	4.4160	4.31	0.1060	0.1060
Refere	ence Compour	nd:[EMIM][H	$[SO_4]$		RMS, p	pm	0.1236	0.2414
level o	of theory:B3L	YP/6-31+G(d)		MAE, p	opm	0.1133	0.2288
[CMI]	[HSO ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	22.285	23.327	8.310	9.352	9.253	8.680	0.672	0.573
H2	23.605	24.049	7.110	7.554	7.933	7.390	0.164	0.543
Н3	23.497	23.971	7.050	7.524	8.041	7.370	0.154	0.671
H4	27.533	27.732	3.860	4.060	4.005	3.820	0.240	0.185
Н5	26.170	27.396	3.520	4.746	5.368	4.990	0.244	0.378
Refere	ence Compour	nd:[EMIM][H	$[SO_4]$		RMS, p	pm	0.352	0.500
level o	of theory: b3ly	vp/6-31++g(d	,p)-d3		MAE, p	opm	0.295	0.470
[CMI]	[HSO ₄]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	22.032	22.864	8.310	9.141	9.506	8.680	0.461	0.826
H2	23.483	23.611	7.110	7.238	8.055	7.390	0.152	0.665
Н3	23.554	23.592	7.050	7.088	7.984	7.370	0.282	0.614
H4	27.442	27.494	3.860	3.912	4.096	3.820	0.092	0.276

H5	26.233	27.364	3.520	4.651	5.305	4.990	0.339	0.315
Referen	ce Compoun	d:[EMIM][H	$SO_4]$	RMS,	ppm	0.296	0.579	
level of theory: m062x/aug-cc-pvdz					MAE, ppm		0.265	0.539

Table S23. Calculated ¹H NMR Chemical Shifts of the [C₄mim]⁺-Based ILs

	e 525. Calculate		ennear Sints of th		-Daset	1 1129
entry	Studied IL	Refence IL	Level of theory		MAE	RMS
1	[C ₄ mim][BF ₄]	[C ₂ mim][BF ₄]	b3lyp/6-31gd+	RRS, ppm	0.2480	0.2198
				TMS, ppm	0.3492	0.2864
2	[C ₄ mim][BF ₄]	[C ₂ mim][BF ₄]	b3lyp/6-311gdp++	RRS, ppm	0.2084	0.1864
				TMS, ppm	0.3763	0.2483
3	[C ₄ mim][BF ₄]	[C ₂ mim][BF ₄]	b3lyp/aug-cc-pvdz	RRS, ppm	0.2108	0.1909
				TMS, ppm	0.4091	0.2625
4	[C ₄ mim][BF ₄]	[C ₂ mim][BF ₄]	m062x/6-31gd+	RRS, ppm	0.2726	0.2147
				TMS, ppm	0.2497	0.1668
5	[C ₄ mim][BF ₄]	[C ₂ mim][BF ₄]	mpw1pw91/6-31gd+	RRS, ppm	0.2480	0.2198
				TMS, ppm	0.3492	0.2864
6	[C ₄ mim][PF ₆]	[C ₂ mim][PF ₆]	b3lyp/6-31gd+	RRS, ppm	0.2471	0.2288
				TMS, ppm	0.2825	0.1869
7	[C ₄ mim][PF ₆]	[C ₂ mim][PF ₆]	b3lyp/6-311gdp++	RRS, ppm	0.2216	0.1963
				TMS, ppm	0.3548	0.2018
8	[C ₄ mim][PF ₆]	[C ₂ mim][PF ₆]	b3lyp/aug-cc-pvdz	RRS, ppm	0.2358	0.2151
				TMS, ppm	0.4496	0.2377
9	[C ₄ mim][PF ₆]	[C ₂ mim][PF ₆]	m062x/6-31gd+	RRS, ppm	0.2001	0.1765
				TMS, ppm	0.3486	0.2238
10	[C ₄ mim][PF ₆]	$[C_2 mim][PF_6]$	mpw1pw91/6-31gd+	RRS, ppm	0.2481	0.2299
				TMS, ppm	0.2710	0.1872
11	[C ₄ mim][MeSO ₄]	[C ₂ mim][MeSO ₄]	b3lyp/6-31gd+	RRS, ppm	0.2678	0.2563
	10 10 10 10 10			TMS, ppm	0.6671	0.5336
12	[C ₄ mim][MeSO ₄]	$[C_2 mim][MeSO_4]$	b3lyp/6-311gdp++	RRS, ppm	0.2423	0.2164
	10 10 10 10 10			TMS, ppm	0.7216	0.4756
13	[C ₄ mım][MeSO ₄]	$[C_2mim][MeSO_4]$	b3lyp/aug-cc-pvdz	RRS, ppm	0.2671	0.2457
			0.00 16 01 1	TMS, ppm	0.8/14	0.497/8
14	[C ₄ mim][MeSO ₄]	$[C_2 mim][MeSO_4]$	m062x/6-31gd+	KKS, ppm	0.2319	0.2226
15				IMS, ppm	0.5818	0.3659
15	[C ₄ mim][MeSO ₄]	$[C_2 mim][MeSO_4]$	mpw1pw91/6-31gd+	KKS, ppm	0.2406	0.2316
17			$h_{2}h_{m}/(2) = 1$	IMS, ppm	0.2106	0.4421
10	$[\mathbb{C}_4 \text{mim}][11_2\text{N}]$	$[\mathbb{C}_2 \min][\Pi_2 \mathbb{N}]$	051yp/0-51ga+	KKS, ppm	0.5190	0.3013
17		[C mim][Tf N]	h2hm/6 211~dn++	DDS nom	0.080/	0.4402
1 /			031yp/0-311gap++	ккэ, ppm TMS_nnm	1.0107	0.5092
10	[C.mim][Tf.N]	[Comim][Tf-N]	h3lvn/aug.co.nvdz	RRS nom	0.3300	0.3100
10			obiyp/aug-cc-pvuz	TMS_ppm	0.9956	0.5212
10	[C.mim][Tf N]	[Comim][Tf N]	m062x/6_31ad⊥	RRS nom	0.3350	0.3031
19			11002x/0-31gu+	ккз, ррш	0.3043	0.3432

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	0.7989	0.3733
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	[C ₄ mim][Tf ₂ N]	[C ₂ mim][Tf ₂ N]	mpw1pw91/6-31gd+	RRS, ppm	0.3230	0.3049
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	0.6865	0.4172
$ [C_4mim][OTs] [C_2mim][OTs] b3lyp/6-311gdp++ RRS, ppm 0.2328 0.2161 TMS, ppm 1.1166 0.6415 0.2211 TMS, ppm 1.1166 0.6415 0.2211 TMS, ppm 1.2185 0.6725 0.2211 TMS, ppm 1.2185 0.6725 0.2211 TMS, ppm 1.2185 0.6725 0.2210 TMS, ppm 0.2200 0.2103 TMS, ppm 1.0051 0.5948 0.2526 0.2062 TMS, ppm 0.2626 0.2062 TMS, ppm 0.8633 0.5267 0.2211 TMS, ppm 0.8633 0.5267 0.2210 TMS, ppm 0.8555 0.2210 TMS, ppm 0.3563 0.3246 TMS, ppm 0.3563 0.3216 TMS, ppm 0.2200 0.2202 TMS, ppm 0.2200 0.2202 TMS, ppm 0.2200 0.2202 TMS, ppm 0.2200 0.2203 0.2200 TMS, ppm 0.2200 0.2203 0.2200 TMS, ppm 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2000 TMS, ppm 0.2200 0.2200 0.2000 TMS, ppm 0.2200 0.2200 0.2000 TMS, ppm 0.2200 0.2200 0.2000 0.2000 TMS, ppm 0.2200 0.2000 0.2000 0.2000 TMS, ppm 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 TMS, ppm 0.2000 0.2000 0.2000 0.2000 TMS, ppm 0.2000 0.2000 0.2000 0.2000 TMS, ppm 0.2000 0.2000 0.2000 TMS, ppm 0.2000 0.2000 TMS, ppm 0.2000 0.2000 TMS, ppm 0.2000 0.20$	21	[C ₄ mim][OTs]	[C ₂ mim][OTs]	b3lyp/6-31gd+	RRS, ppm	0.2335	0.2128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	0.8559	0.5345
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	[C ₄ mim][OTs]	[C ₂ mim][OTs]	b3lyp/6-311gdp++	RRS, ppm	0.2328	0.2161
$\begin{array}{ccccc} 23 & [C_4mim][OTs] & [C_2mim][OTs] & b3lyp/aug-cc-pvdz & RRS, ppm & 0.2617 & 0.2211 \\ & TMS, ppm & 1.2185 & 0.6725 \\ 24 & [C_4mim][OTs] & [C_2mim][OTs] & m062x/6-31gd+ & RRS, ppm & 0.2290 & 0.2103 \\ & TMS, ppm & 1.0051 & 0.5948 \\ 25 & [C_4mim][OTs] & [C_2mim][OTs] & mpw1pw91/6-31gd+ & RRS, ppm & 0.2260 & 0.2062 \\ & TMS, ppm & 0.8633 & 0.5267 \\ 26 & [C_4mim][TFA] & [C_2mim][TFA] & b3lyp/6-31gd+ & RRS, ppm & 0.3871 & 0.3565 \\ & TMS, ppm & 1.4080 & 0.6910 \\ 27 & [C_4mim][TFA] & [C_2mim][TFA] & b3lyp/6-311gdp++ & RRS, ppm & 0.3563 & 0.3246 \\ & TMS, ppm & 1.8407 & 0.8342 \\ 28 & [C_4mim][TFA] & [C_2mim][TFA] & b3lyp/aug-cc-pvdz & RRS, ppm & 0.3953 & 0.3101 \\ & TMS, ppm & 1.9288 & 0.8555 \\ 29 & [C_4mim][TFA] & [C_2mim][TFA] & m062x/6-31gd+ & RRS, ppm & 0.3940 & 0.3321 \\ & TMS, ppm & 1.6299 & 0.8290 \\ 30 & [C_4mim][TFA] & [C_2mim][TFA] & mpw1pw91/6-31gd+ & RRS, ppm & 0.3772 & 0.3467 \\ & TMS, ppm & 1.4139 & 0.6546 \\ 31 & [C_4mim][OAC] & [C_2mim][OAC] & b3lyp/6-31gd+ & RRS, ppm & 0.4017 & 0.3243 \\ & TMS, ppm & 1.5720 & 0.9384 \\ 32 & [C_4mim][OAC] & [C_2mim][OAC] & b3lyp/6-31gd+ & RRS, ppm & 0.4834 & 0.3431 \\ & TMS, ppm & 2.0822 & 1.0864 \\ 33 & [C_4mim][OAC] & [C_2mim][OAC] & b3lyp/aug-cc-pvdz & RRS, ppm & 0.4619 & 0.3149 \\ & TMS, ppm & 1.777 & 0.9193 \\ 34 & [C_4mim][OAC] & [C_2mim][OAC] & m062x/6-31gd+ & RRS, ppm & 0.4206 & 0.3353 \\ & TMS, ppm & 1.5497 & 0.8931 \\ \end{array}$					TMS, ppm	1.1166	0.6415
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	[C ₄ mim][OTs]	[C ₂ mim][OTs]	b3lyp/aug-cc-pvdz	RRS, ppm	0.2617	0.2211
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.2185	0.6725
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	[C ₄ mim][OTs]	[C ₂ mim][OTs]	m062x/6-31gd+	RRS, ppm	0.2290	0.2103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.0051	0.5948
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	[C ₄ mim][OTs]	[C ₂ mim][OTs]	mpw1pw91/6-31gd+	RRS, ppm	0.2260	0.2062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	0.8633	0.5267
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	[C ₄ mim][TFA]	[C ₂ mim][TFA]	b3lyp/6-31gd+	RRS, ppm	0.3871	0.3565
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.4080	0.6910
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	[C ₄ mim][TFA]	[C ₂ mim][TFA]	b3lyp/6-311gdp++	RRS, ppm	0.3563	0.3246
$ \begin{array}{ccccc} 28 & [C_4mim][TFA] & [C_2mim][TFA] & b3lyp/aug-cc-pvdz & RRS, ppm & 0.3953 & 0.3101 \\ & TMS, ppm & 1.9288 & 0.8555 \\ 29 & [C_4mim][TFA] & [C_2mim][TFA] & m062x/6-31gd+ & RRS, ppm & 0.3940 & 0.3321 \\ & TMS, ppm & 1.6299 & 0.8290 \\ 30 & [C_4mim][TFA] & [C_2mim][TFA] & mpw1pw91/6-31gd+ & RRS, ppm & 0.3772 & 0.3467 \\ & TMS, ppm & 1.4139 & 0.6546 \\ 31 & [C_4mim][OAC] & [C_2mim][OAC] & b3lyp/6-31gd+ & RRS, ppm & 0.4017 & 0.3243 \\ & TMS, ppm & 1.5720 & 0.9384 \\ 32 & [C_4mim][OAC] & [C_2mim][OAC] & b3lyp/6-311gdp++ & RRS, ppm & 0.4834 & 0.3431 \\ & TMS, ppm & 2.0822 & 1.0864 \\ 33 & [C_4mim][OAC] & [C_2mim][OAC] & b3lyp/aug-cc-pvdz & RRS, ppm & 0.4619 & 0.3149 \\ & TMS, ppm & 2.1653 & 1.1157 \\ 34 & [C_4mim][OAC] & [C_2mim][OAC] & m062x/6-31gd+ & RRS, ppm & 0.4412 & 0.3697 \\ & TMS, ppm & 1.7177 & 0.9193 \\ 35 & [C_4mim][OAC] & [C_2mim][OAC] & mpw1pw91/6-31gd+ & RRS, ppm & 0.4206 & 0.3353 \\ & TMS, ppm & 1.5497 & 0.8931 \\ \end{array}$					TMS, ppm	1.8407	0.8342
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	[C ₄ mim][TFA]	[C ₂ mim][TFA]	b3lyp/aug-cc-pvdz	RRS, ppm	0.3953	0.3101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.9288	0.8555
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	[C ₄ mim][TFA]	[C ₂ mim][TFA]	m062x/6-31gd+	RRS, ppm	0.3940	0.3321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.6299	0.8290
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	[C ₄ mim][TFA]	[C ₂ mim][TFA]	mpw1pw91/6-31gd+	RRS, ppm	0.3772	0.3467
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.4139	0.6546
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	[C ₄ mim][OAC]	[C ₂ mim][OAC]	b3lyp/6-31gd+	RRS, ppm	0.4017	0.3243
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	1.5720	0.9384
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	[C ₄ mim][OAC]	[C ₂ mim][OAC]	b3lyp/6-311gdp++	RRS, ppm	0.4834	0.3431
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS, ppm	2.0822	1.0864
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	[C ₄ mim][OAC]	[C ₂ mim][OAC]	b3lyp/aug-cc-pvdz	RRS, ppm	0.4619	0.3149
34 [C ₄ mim][OAC] [C ₂ mim][OAC] m062x/6-31gd+ RRS, ppm 0.4412 0.3697 35 [C ₄ mim][OAC] [C ₂ mim][OAC] mpw1pw91/6-31gd+ RRS, ppm 0.4206 0.3353 TMS, ppm 1.5497 0.8931					TMS, ppm	2.1653	1.1157
35 [C ₄ mim][OAC] [C ₂ mim][OAC] mpw1pw91/6-31gd+ TMS, ppm 1.7177 0.9193	34	[C ₄ mim][OAC]	[C ₂ mim][OAC]	m062x/6-31gd+	RRS, ppm	0.4412	0.3697
35 [C ₄ mim][OAC] [C ₂ mim][OAC] mpw1pw91/6-31gd+ RRS, ppm 0.4206 0.3353 TMS, ppm 1.5497 0.8931					TMS, ppm	1.7177	0.9193
TMS, ppm 1.5497 0.8931	35	[C ₄ mim][OAC]	[C ₂ mim][OAC]	mpw1pw91/6-31gd+	RRS, ppm	0.4206	0.3353
					TMS, ppm	1.5497	0.8931

--Calculation of IL clusters

Figure S21. Structure of Ethanolamine Acetate (left) and Ethanolamine Formate (right)

Table S24. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the Ethanolamine Acetate Chemical Shifts Using the Modification of RRS Approach.

ethanolamine acetate

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{cal}(TMS)$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	13.357	14.593	5.600	6.836	18.197	6.720	0.116	11.477
H2	29.573	29.804	6.150	6.381	1.982	6.550	0.169	4.568
Н3	29.714	30.143	5.950	6.379	1.840	6.550	0.171	4.710
H4	28.927	28.642	3.160	2.874	2.627	2.800	0.074	0.173
Н5	27.791	27.893	3.430	3.532	3.763	3.560	0.028	0.203
H6	30.820	30.983	7.600	7.763	0.734	7.800	0.037	7.066
H7	29.521	22.692	8.400	1.572	2.033	1.750	0.179	0.283
Reference Compound: ethanolamine formate					RMS, ppm		0.126	5.668
level of	theory: m06	62x/aug-cc-p	vdz	MAE, p	opm	0.111	4.069	

Figure S22. Structure of 4 IP Ethanolamine Acetate (left) and 4 IP Ethanolamine Formate (right)

Table S25. Mean Value of the 4 IP Ethanolamine Acetate Chemical Shifts

4IP ethanolamine acetate

H1	AVERAGE	H2	AVERAGE	H3	AVERAGE
14.1689	13.0831	28.9835	28.8571	28.5098	29.3141
13.8030		29.0025		29.9486	
13.3752		28.1450		29.2008	
10.9854		29.2974		29.5970	

level of theory: m062x/aug-cc-pvdz

Table S26. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the 4 IP Ethanolamine Acetate Chemical Shifts Using the Modification of RRS Approach.

4IP ethanolamine acetate

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{cal}(TMS)$	δ_{exp}	AE (RRS)	AE (TMS)
H1	13.083	13.125	5.600	5.642	18.581	6.720	1.078	11.861
H2	28.857	28.426	6.150	5.719	2.807	6.550	0.831	3.743
Н3	29.314	28.385	5.950	4.939	2.269	6.550	1.611	4.281
H4	28.732	28.498	3.160	2.926	2.932	2.800	0.126	0.132
Н5	28.127	27.195	3.430	2.498	3.537	3.560	1.062	0.023
H6	27.716	27.097	7.600	6.981	3.948	7.800	0.819	3.852
H7	29.605	22.865	8.400	1.660	2.059	1.750	0.090	0.309
Reference Compound: 4 IP ethanolamine formate					RMS, p	pm	0.947	5.182
level of	theory: m06	2x/aug-cc-pv	vdz	MAE, p	pm	0.921	3.457	

Figure S23. Structure of 4 IP [C₄mim][OH]

4 IP [C ₄ mim][OH]								
H2	AVERAGE	Н3	AVERAGE	H4	AVERAGE			
21.0759	23.8225	22.2115	23.4900	24.1447	23.8264			
24.0320		24.0328		23.5173				
23.1604		23.9306		23.7704				
23.0218		23.7851		23.8730				
level of theory: m062x/aug-cc-pvdz								

Table S27. Mean Value of the 4 IP [C₄mim][OH] Chemical Shifts

Table S28. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the 4 IP $[C_4mim][OH]$ Chemical Shifts Using the Modification of TMS Approach.

4 IP [C ₄ mim	IP [C ₄ mim][OH]										
Atom	σ calc.x	Atom	σ ref.x	δ ref.x	δ calc.x (TMS)	δ exp.x	TMS				
H2	23.825	H2'	24.701	9.23	8.676	9.27	0.593				
Н3	23.490	H3'	23.814	7.79	8.008	7.82	0.188				
H4	23.826	H4'	23.707	7.75	7.672	7.75	0.077				
H1	27.686	H1'	27.645	4.24	3.812	4.20	0.387				
Н5	27.276	H5'	27.489	3.72	4.222	3.86	0.362				
H6	29.961	H6'	30.223	1.25	1.537	1.78	0.242				
H7	30.388				1.111	1.25	0.139				
H8	31.051				0.447	0.90	0.452				
Reference Co	ompound: TMS	5	RMS, pr	om	0.609						
level of theor	ry: m062x/aug	MAE, pj	om	0.410							

Figure S24. Structure of 4 IP [C₄mim][BF₄]

Figure S25. Structure of 8 IP [C₂mim][BF₄] **Table S29. Mean Value of the 4 IP [C₄mim][BF₄] Chemical Shifts**

4 IP $[C_4 mim][BF_4]$	4]				
H2	AVERAGE	Н3	AVERAGE	H4	AVERAGE
22.9579	22.9998	25.1438	25.0761	24.2722	24.8225
22.7141		25.2079		25.1010	
23.2889		24.5681		24.6092	
23.0382		25.3844		25.3075	

Table S30. Mean Absolute Errors (MAE) and Root Mean Square Deviations (RMS) of the 4IP [C₄mim][BF₄] Acetate Chemical Shifts Using the Modification of RRS Approach.

4 IP [(_4mimj[BF4]							
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H1	23.000	23.028	8.550	8.713	9.157	8.770	0.057	0.387
H2	25.077	25.541	7.350	7.814	6.944	7.690	0.123	0.746
Н3	24.823	24.916	7.410	7.452	7.148	7.630	0.178	0.482
H4	28.383	28.264	4.140	4.259	3.638	4.040	0.219	0.402
Н5	28.039	27.950	3.830	3.920	3.982	4.320	0.400	0.338
H6	30.123	30.509	1.410	1.796	1.898	1.930	0.134	0.032
H7	30.628				1.393	1.380		0.013
H8	31.150				0.872	0.940		0.068
Reference Compound: 8 IP [C ₂ mim][BF ₄]					RMS, p	opm	0.214	0.390
level of theory: mp2/aug-cc-pvdz					MAE, p	opm	0.185	0.308

--Cartesian coordinates of optimized ILs

-methylimidazole m062x/aug-cc-pvdz	x	у	Z
С	0.1905	-1.0845	0.0002
Ν	1.4713	-0.7677	-0.0001
С	1.5021	0.6064	-0.0001
С	0.2223	1.1084	-0.0001
Ν	-0.6040	0.0138	-0.0001
С	-2.0563	0.0345	0.0001
Н	-0.2226	-2.0877	0.0003
Н	2.4359	1.1583	-0.0002
Н	-0.1677	2.1197	-0.0002
Н	-2.4245	0.5451	0.8965
Н	-2.4245	0.5504	-0.8933
Н	-2.4193	-0.9969	-0.0030
MS m062x/aug-cc-pvdz			
Si	0.0000	0.0000	0.0000
С	1.0890	1.0890	1.0890
С	-1.0890	-1.0890	1.0890
С	-1.0890	1.0890	-1.0890
С	1.0890	-1.0890	-1.0890
Н	1.7356	1.7356	0.4793
Н	0.4793	1.7356	1.7356
Н	1.7356	0.4793	1.7356
Н	-1.7356	-0.4793	1.7356
Н	-1.7356	-1.7356	0.4793
Н	-0.4793	-1.7356	1.7356
Н	-1.7356	0.4793	-1.7356
Н	-1.7356	1.7356	-0.4793
Н	-0.4793	1.7356	-1.7356
Н	1.7356	-1.7356	-0.4793
Н	1.7356	-0.4793	-1.7356
Н	0.4793	-1.7356	-1.7356
$\Gamma_{\rm smim}[{\rm BE}_{\rm s}] = m062 {\rm v}/{\rm aug}_{\rm cc} {\rm mvd}_{\rm z}$			
C	-1.7276	-2.1042	-0.9164
N	-2 1749	-1 2338	0.0512
1 9	-2.1/7/	-1.200	0.0312

Table S31. Cartesian coordinates
Ν	-0.0580	-1.5189	0.3930
С	-0.3937	-2.2837	-0.7016
С	-3.5179	-0.6682	0.1364
С	1.2964	-1.3129	0.9195
С	2.2127	-0.7160	-0.1405
F	-0.5566	1.0290	-1.1699
В	-0.6565	1.9357	-0.0901
F	0.2976	1.5792	0.8983
F	-1.9510	1.8263	0.4789
F	-0.4286	3.2436	-0.5277
Н	-1.1811	-0.1722	1.6313
Н	0.3326	-2.8875	-1.2281
Н	-2.3902	-2.5175	-1.6648
Н	-4.2474	-1.4720	0.0132
Н	-3.6335	-0.1986	1.1144
Н	-3.6347	0.0889	-0.6431
Н	1.6704	-2.2772	1.2820
Н	1.1953	-0.6267	1.7654
Н	2.3595	-1.4414	-0.9535
Н	1.7179	0.1672	-0.5611
Н	3.1602	-0.4488	0.2788
Н	3.1602	-0.4488	0.2788
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz	3.1602	-0.4488	0.2788
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C	3.1602	-0.4488	0.2788
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N	3.1602 1.5170 2.6860	-0.4488 -0.4083 -1.0212	0.2788 0.0472 -0.1375
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C	3.1602 1.5170 2.6860 3.7041	-0.4488 -0.4083 -1.0212 -0.1143	0.2788 0.0472 -0.1375 0.0512
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C C	3.1602 1.5170 2.6860 3.7041 3.1161	-0.4488 -0.4083 -1.0212 -0.1143 1.0779	0.2788 0.0472 -0.1375 0.0512 0.3551
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C N	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C N C N C	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C N C N C C C N C C C	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C N C C N C C C C C C C C	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C N C C N C C H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470
H [C ₂ mim][EtSO ₄] m062x/aug-cc-pvdz C N C C N C C N C C H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389
H [C2mim][EtSO4] m062x/aug-cc-pvdz C N C C N C C N C C H H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459 3.5456	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946 2.0468	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389 0.5776
H [C2mim][EtSO4] m062x/aug-cc-pvdz C N C C C N C C C H H H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459 3.5456 3.4162	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946 2.0468 -2.5204	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389 0.5776 -1.3983
H [C2mim][EtSO4] m062x/aug-cc-pvdz C N C C N C C N C C H H H H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459 3.5456 3.4162 3.3810	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946 2.0468 -2.5204 -2.9349	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389 0.5776 -1.3983 0.3477
H [C2mim][EtSO4] m062x/aug-cc-pvdz C N C N C C N C C N C C H H H H H H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459 3.5456 3.4162 3.3810 1.8580	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946 2.0468 -2.5204 -2.9349 -2.8744	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389 0.5776 -1.3983 0.3477 -0.5908
H [C2mim][EtSO4] m062x/aug-cc-pvdz C N C N C C N C C N C C H H H H H H H H H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459 3.5456 3.4162 3.3810 1.8580 1.0775	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946 2.0468 -2.5204 -2.9349 -2.8744 2.5054	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389 0.5776 -1.3983 0.3477 -0.5908 1.4161
H [C2mim][EtSO4] m062x/aug-cc-pvdz C N C C N C C N C C H H H H H H H H H H H H H	3.1602 1.5170 2.6860 3.7041 3.1161 1.7562 2.8499 0.7264 0.4910 0.5383 4.7459 3.5456 3.4162 3.3810 1.8580 1.0775 -0.1748	-0.4488 -0.4083 -1.0212 -0.1143 1.0779 0.8672 -2.4343 1.8913 2.7250 -0.8789 -0.3946 2.0468 -2.5204 -2.9349 -2.8744 2.5054 1.3536	0.2788 0.0472 -0.1375 0.0512 0.3551 0.3507 -0.4667 0.5812 -0.6668 -0.0470 -0.0389 0.5776 -1.3983 0.3477 -0.5908 1.4161 0.8904

Н	1.4126	3.2264	-0.9869
S	-2.1043	-0.8255	0.1557
Ο	-1.2390	-1.8058	-0.5552
Ο	-1.5374	-0.3690	1.4583
Ο	-1.9654	0.4934	-0.8500
Ο	-3.5457	-1.1593	0.2003
С	-2.7377	1.6211	-0.4356
Н	-2.5883	2.3908	-1.1991
Н	-3.8018	1.3609	-0.3837
Н	-2.3991	1.9904	0.5421
Н	-0.2591	3.4939	-0.4483
[C ₂ mim][OAC] m062x/aug-cc-pvdz			
С	-0.6121	0.3551	-0.0816
Ν	-1.1420	1.5713	0.0418
С	-2.5085	1.4858	-0.1075
С	-2.7997	0.1708	-0.3246
Ν	-1.6019	-0.5084	-0.3073
С	-0.3687	2.7860	0.2905
С	-1.4110	-1.9570	-0.4575
С	-1.8549	-2.7051	0.7882
Н	0.4498	0.0940	-0.0174
Н	-3.1478	2.3579	-0.0546
Н	-3.7445	-0.3293	-0.4959
Н	-0.6892	3.2256	1.2397
Н	0.6860	2.4982	0.3361
Н	-0.5391	3.4925	-0.5272
Н	-0.3427	-2.1001	-0.6474
Н	-1.9793	-2.2684	-1.3397
Н	-2.9179	-2.5342	0.9976
Н	-1.2636	-2.3885	1.6555
С	2.7857	-0.1731	0.0045
С	4.2800	-0.4522	-0.1332
Ο	2.4203	1.0099	0.2410
0	2.0050	-1.1555	-0.1471
Н	4.8772	0.4110	0.1764
Н	4.5519	-1.3334	0.4604
Н	4.4991	-0.6830	-1.1847
Н	-1.7001	-3.7792	0.6354

[C ₂ mim][OTs]	b3lyp/6-31++g(d,p)-d3			
	С	1.0137	-0.7682	1.2570
	Ν	1.9170	0.1766	1.5428
	С	3.0971	-0.1194	0.8832
	С	2.8907	-1.2822	0.2001
	Ν	1.5870	-1.6746	0.4551
	С	1.6907	1.3423	2.3976
	С	0.9024	-2.8693	-0.0803
	С	1.2318	-3.1199	-1.5438
	Н	-0.0093	-0.7963	1.6050
	Н	3.9650	0.5156	0.9602
	Н	3.5508	-1.8512	-0.4332
	Н	1.9790	2.2431	1.8564
	Н	0.6332	1.3871	2.6514
	Н	2.2886	1.2465	3.3058
	Н	-0.1654	-2.6950	0.0591
	Н	1.1934	-3.7245	0.5354
	Н	2.2865	-3.3716	-1.6838
	Н	0.9907	-2.2515	-2.1617
	0	-3.8191	0.8283	0.5938
	S	-2.7960	-0.1960	0.2052
	0	-2.2697	-0.9523	1.3950
	0	-3.2652	-1.1116	-0.8843
	С	-1.3890	0.7040	-0.4508
	С	-1.0442	1.9408	0.0985
	С	0.1269	2.5708	-0.3200
	С	0.9725	1.9765	-1.2687
	С	2.2804	2.6198	-1.6438
	С	0.5926	0.7447	-1.8209
	С	-0.5807	0.1071	-1.4197
	Н	-1.6755	2.4039	0.8487
	Н	0.3985	3.5302	0.1105
	Н	2.2327	3.7080	-1.5458
	Н	3.0797	2.2627	-0.9818
	Н	2.5690	2.3704	-2.6690
	Н	1.2301	0.2704	-2.5613
	Н	-0.8534	-0.8531	-1.8413
	С	0.3922	-4.3152	-2.0316

 $[C_2mim][PF_6] \quad b3lyp/6-31++g(d,p)-d3$

С	1.6587	-0.4133	-0.6940
Ν	1.9387	-1.5801	-0.1036
С	3.0830	-1.4297	0.6598
С	3.4891	-0.1350	0.5177
Ν	2.5871	0.4799	-0.3333
С	1.1476	-2.8073	-0.2215
С	2.5865	1.9085	-0.6989
С	2.0970	2.7798	0.4517
Н	0.8024	-0.2157	-1.3176
Н	3.4992	-2.2474	1.2265
Н	4.3275	0.3951	0.9402
Н	0.8482	-3.1338	0.7754
Н	0.2589	-2.5934	-0.8117
Н	1.7473	-3.5798	-0.7068
Н	1.9426	2.0094	-1.5741
Н	3.6072	2.1636	-0.9936
Н	2.1025	3.8274	0.1353
Н	2.7466	2.6835	1.3270
Н	1.0769	2.5090	0.7363
Р	-2.0240	0.0961	0.0517
F	-2.5779	1.0381	1.2725
F	-1.4444	-0.8476	-1.1801
F	-0.8429	-0.4961	1.0388
F	-3.1839	0.6819	-0.9474
F	-1.0036	1.3039	-0.4242
F	-3.0196	-1.1220	0.5133
$[C_2 mim][Tf_2N]$ b3lyp/6-31++g(d,p)-d3			
С	1.5783	-1.8093	2.2754
С	2.1568	-2.3267	0.9636
С	3.7347	1.5948	-1.6099
Ν	3.0641	-1.3418	0.3408
С	4.4354	-1.2720	0.5062
С	4.8659	-0.1789	-0.1899
Ν	3.7461	0.4001	-0.7612
С	2.6686	-0.3203	-0.4284
Н	0.9330	-2.5787	2.7102

2.9946

2.1073

0.2413

S40

2.3693

0.9744

1.3664

-1.5739

-0.9137

-2.5343

Н

Н

Н

Н	2.7427	-3.2356	1.1116
Н	4.2639	2.4002	-1.0982
Н	4.2232	1.3715	-2.5605
Н	2.6993	1.8888	-1.7796
Н	4.9753	-1.9986	1.0924
Н	5.8534	0.2307	-0.3312
Н	1.6402	-0.1087	-0.6939
Ν	-0.4502	0.0905	-0.5153
S	-1.3314	-1.1062	-1.1449
S	-0.8168	1.6675	-0.6022
Ο	-2.1459	2.0162	-1.1120
0	-2.1044	-0.7690	-2.3433
Ο	-0.4743	-2.3005	-1.1491
С	-2.6205	-1.5052	0.1685
С	-0.8674	2.0811	1.2329
F	-3.4836	-0.4931	0.3174
F	-3.3001	-2.6037	-0.1952
F	-2.0239	-1.7431	1.3487
F	-1.8151	1.3703	1.8580
F	-1.1375	3.3864	1.3816
F	0.3164	1.8213	1.8134
0	0.3613	2.4041	-1.0852
$[C_2 mim][TFA] b3lyp/6-31++g(d,p)-d3$			
С	1.6598	-0.4393	-0.0602
Ν	2.4826	-1.4928	0.0463
С	3.7908	-1.0608	-0.0972
С	3.7390	0.2887	-0.2929
Ν	2.4028	0.6546	-0.2680
С	2.0195	-2.8665	0.2705
С	1.8506	2.0208	-0.4247
С	2.1436	2.8982	0.7905
Н	0.5570	-0.5152	0.0046
Н	4.6299	-1.7383	-0.0533
Н	4.5283	1.0075	-0.4509
Н	2.4266	-3.2437	1.2122
Н	0.9290	-2.8512	0.3186
Н	2.3437	-3.5034	-0.5565
Н	0.7723	1.8922	-0.5660
Н	2.2871	2.4386	-1.3377

Н	1.7104	3.8901	0.6236
Н	3.2187	3.0226	0.9671
Н	1.6842	2.4789	1.6915
С	-1.7098	0.0151	-0.1002
С	-3.2705	-0.0509	-0.0057
0	-1.2098	1.1262	-0.3699
0	-1.1314	-1.0792	0.1368
F	-3.8839	1.0451	-0.5014
F	-3.7743	-1.1204	-0.6718
F	-3.6633	-0.1712	1.2936

Confl.[C ₄ mim][BF ₄]	m062x/aug-cc-pvdz		Energy=	-847.6574
С	2	-1.7455	-2.0583	-0.9057
Ν	I	-2.2000	-1.1750	0.0477
С	2	-1.1804	-0.8412	0.8352
Ν	I	-0.0941	-1.4955	0.4350
С	2	-0.4231	-2.2604	-0.6620
С	2	-3.5183	-0.5450	0.0647
C	2	1.2638	-1.2759	0.9563
С	2	2.1830	-0.7272	-0.1305
C	2	3.5268	-0.2912	0.4508
С	2	4.4918	0.1623	-0.6426
F		-0.4673	0.9447	-1.1355
В	•	-0.6069	1.8968	-0.0944
F		0.2655	1.5022	0.9609
F		-1.9344	1.8010	0.3998
F		-0.3153	3.1651	-0.5286
Н	[-1.2109	-0.0968	1.6167
Н	[0.3050	-2.8709	-1.1720
Н	ĺ	-2.3962	-2.4538	-1.6698
Н	ĺ	-4.2701	-1.3033	-0.1581
Н	[-3.6923	-0.1219	1.0526
Н	Í	-3.5305	0.2634	-0.6670
Н	ĺ	1.6291	-2.2253	1.3616
Н	[1.1665	-0.5510	1.7662
Н	ĺ	2.3466	-1.4952	-0.8994
Н	[1.6808	0.1210	-0.6063
Н	ſ	3.3546	0.5292	1.1579
Н	ſ	3.9750	-1.1172	1.0211
Н	I	5.4468	0.4893	-0.2210

Н	4.6954	-0.6526	-1.3463
Н	4.0687	0.9977	-1.2097
Conf2.[C ₄ mim][BF ₄] m062x/aug-cc-pvdz		Energy=	-847.6582
С	0.6475	2.9312	0.4830
Ν	1.3237	2.0275	-0.3210
С	0.5957	0.9110	-0.4112
Ν	-0.5210	1.0656	0.3025
С	-0.5089	2.3263	0.8746
С	2.6603	2.1798	-0.9062
С	-1.4946	-0.0199	0.5361
С	-2.8256	0.2207	-0.1785
С	-3.8187	-0.9204	0.0810
С	-5.1602	-0.7105	-0.6281
F	1.3938	-1.1557	1.2687
В	1.8951	-1.7919	0.1136
F	2.4329	-3.0215	0.3825
F	2.8451	-0.9252	-0.5001
F	0.7928	-1.8995	-0.8086
Н	0.8660	0.0039	-0.9363
Н	-1.3042	2.6726	1.5153
Н	1.0501	3.9054	0.7112
Н	3.2663	2.7927	-0.2365
Н	3.0951	1.1818	-0.9852
Н	2.5944	2.6597	-1.8865
Н	-1.6288	-0.0979	1.6195
Н	-1.0032	-0.9345	0.1980
Н	-3.2634	1.1737	0.1515
Н	-2.6422	0.3153	-1.2571
Н	-3.3714	-1.8678	-0.2468
Н	-3.9860	-1.0181	1.1627
Н	-5.8465	-1.5395	-0.4250
Н	-5.6465	0.2147	-0.2952
Н	-5.0286	-0.6455	-1.7147
Conf3.[C4mim][BF4] m062x/aug-cc-pvdz		Energy=	-847.6530
С	-2.2181	-2.2367	-0.5901
Ν	-2.3977	-0.9552	-0.0965
С	-0.9728	-2.6378	-0.2075
С	-1.2967	-0.6082	0.5600

Ν	-0.4168	-1.5993	0.5202
С	-3.5399	-0.0615	-0.3173
Н	-3.8819	-0.1762	-1.3452
Н	-4.3522	-0.3061	0.3713
Н	-3.1866	0.9658	-0.1578
С	0.9833	-1.4746	0.9781
С	1.9292	-1.1584	-0.1851
С	3.3133	-0.7387	0.3252
С	4.3010	-0.4755	-0.8147
Н	5.2736	-0.1558	-0.4280
Н	4.4619	-1.3754	-1.4194
Н	3.9302	0.3120	-1.4787
Н	3.1904	0.1719	0.9237
Н	3.7203	-1.5095	0.9951
Н	2.0135	-2.0325	-0.8454
Н	1.4874	-0.3394	-0.7604
Н	0.9937	-0.6466	1.6903
Н	1.2481	-2.4016	1.4958
Н	-1.1010	0.5082	1.0923
Н	-2.9734	-2.7388	-1.1603
Н	-0.4430	-3.5539	-0.3905
В	-0.1174	2.1746	-0.0219
F	0.3940	3.4135	-0.2947
F	0.5763	1.5481	1.0620
F	-0.0421	1.3021	-1.1325
F	-1.4935	2.2512	0.3729

Conf4.[C ₄ mim][BF ₄] m062x/aug-cc-pvdz		Energy =	-847.6300
С	-1.74549	-2.05826	-0.90571
Ν	-2.19996	-1.17497	0.04773
С	-1.18038	-0.84117	0.83523
Ν	-0.09412	-1.49553	0.43499
С	-0.42307	-2.26037	-0.66197
С	-3.51832	-0.54502	0.06465
С	1.26375	-1.27587	0.95633
С	2.18296	-0.72719	-0.13053
С	3.52676	-0.29121	0.45081
С	4.49177	0.16226	-0.64257
F	7.68053	0.60883	-1.13552
В	8.01211	1.5121	-0.0944

	F	8.59052	0.7491	0.9609
	F	6.79978	2.06142	0.3998
	F	8.87354	2.48764	-0.52861
	Н	-1.21086	-0.09679	1.61674
	Н	0.30498	-2.87089	-1.17198
	Н	-2.39618	-2.45383	-1.66976
	Н	-4.27012	-1.30327	-0.15814
	Н	-3.69233	-0.12191	1.05264
	Н	-3.53052	0.26336	-0.66703
	Н	1.62908	-2.22529	1.36157
	Н	1.16654	-0.55098	1.76619
	Н	2.34659	-1.49517	-0.89944
	Н	1.68076	0.121	-0.60633
	Н	3.35459	0.52918	1.15794
	Н	3.97498	-1.11721	1.02112
	Н	5.44678	0.48927	-0.22103
	Н	4.69541	-0.65259	-1.34627
	Н	4.06865	0.99773	-1.20972
[C ₄ mim][MeSO ₄]	m062x/aug-cc-pvdz			
	C	-1.8307	-0.1561	-0.4319
	Ν	-2.9388	-0.4819	0.2306
	С	-3.5883	0.6706	0.6107
	С	-2.8321	1.7143	0.1632
	Ν	-1.7466	1.1719	-0.4867
	С	-3.3687	-1.8506	0.5048
	C	-0.5962	1.9095	-1.0251
	С	0.3947	2.2561	0.0780
	С	1.6556	2.8964	-0.4947
	С	2.5968	3.3879	0.6002
	Н	-1.1021	-0.8544	-0.8284
	Н	-4.5194	0.6493	1.1623
	Н	-2.9744	2.7842	0.2488
	Н	-3.5974	-1.9399	1.5702
	Н	-4.2535	-2.0848	-0.0943
	Н	-2.5430	-2.5183	0.2456
	Н	-0.9878	2.8078	-1.5143
	Н	-0.1270	1.2610	-1.7697
	H H	-0.1270 0.6563	1.2610 1.3321	-1.7697 0.6124

Н	1.3770	3.7395	-1.1439
Н	2.1669	2.1598	-1.1306
Н	3.5178	3.8046	0.1745
Н	2.8760	2.5672	1.2739
Н	2.1170	4.1702	1.2035
S	1.2649	-1.8714	-0.3090
Ο	-0.0005	-2.6252	-0.0960
Ο	1.1174	-0.7374	-1.2720
0	1.4633	-1.1465	1.1704
О	2.4759	-2.6957	-0.5249
С	2.6780	-0.4015	1.2828
Н	2.6041	0.1572	2.2214
Н	3.5405	-1.0775	1.3206
Н	2.7872	0.2939	0.4395
[C ₄ mim][OAc] m062x/aug-cc-pvdz			
С	0.8052	0.9868	-0.1688
Ν	1.4346	2.1004	0.2034
С	0.5625	3.1628	0.1191
С	-0.6281	2.6587	-0.3169
Ν	-0.4475	1.3045	-0.4920
С	2.8318	2.1444	0.6262
С	-1.4660	0.3285	-0.8993
С	-2.4657	0.0687	0.2190
С	-3.4956	-0.9776	-0.1966
С	-4.5134	-1.2515	0.9052
Н	1.2486	-0.0135	-0.1957
Н	0.8591	4.1734	0.3694
Н	-1.5733	3.1458	-0.5204
Н	2.8873	2.5352	1.6464
Н	3.2169	1.1210	0.5911
Н	3.3963	2.7873	-0.0554
Н	-0.9210	-0.5870	-1.1527
Н	-1.9608	0.7239	-1.7934
Н	-2.9729	1.0065	0.4901
Н	-1.9178	-0.2796	1.1061
Н	-2.9715	-1.9075	-0.4583
Н	-4.0141	-0.6365	-1.1046
Н	-5.2408	-2.0104	0.5914
Н	-5.0667	-0.3386	1.1646

Н	-4.0144	-1.6155	1.8134
С	1.9618	-2.2414	-0.1102
С	2.4221	-3.6739	0.1454
Ο	2.7625	-1.3087	0.1801
Ο	0.7973	-2.0781	-0.5670
Н	3.5144	-3.7470	0.1195
Н	2.0806	-3.9705	1.1474
Н	1.9742	-4.3605	-0.5813
[C ₄ mim][OTs] b3lyp/6-31++g(d,p)-d3			
С	2.4587	-1.3122	-0.5456
Ν	2.9229	-2.3537	0.1554
С	4.1854	-2.0403	0.6288
С	4.4695	-0.7749	0.2035
Ν	3.3784	-0.3402	-0.5288
С	2.1568	-3.5806	0.4125
С	3.1572	1.0165	-1.0756
С	2.8938	2.0440	0.0302
Н	1.4710	-1.2081	-0.9976
Н	4.7605	-2.7323	1.2244
Н	5.3375	-0.1546	0.3643
Н	2.4699	-3.9873	1.3758
Н	1.0992	-3.3051	0.4563
Н	2.3450	-4.3125	-0.3780
Н	2.2884	0.9403	-1.7339
Н	4.0362	1.2746	-1.6767
Н	3.7577	2.0872	0.7100
Н	2.0231	1.7132	0.6097
Ο	-0.1623	0.7448	1.0609
S	-0.6564	-0.3307	0.1580
Ο	-0.1513	-0.1923	-1.2568
Ο	-0.4082	-1.7172	0.6742
С	-2.4479	-0.1354	0.0613
С	-3.1057	0.7281	0.9344
С	-4.4977	0.8513	0.8645
С	-5.2457	0.1214	-0.0673
С	-6.7489	0.2627	-0.1507
С	-4.5594	-0.7441	-0.9366
С	-3.1737	-0.8764	-0.8768

Н	-5.0069	1.5287	1.5474
Н	-7.1348	0.9031	0.6497
Н	-7.0556	0.7052	-1.1078
Н	-7.2480	-0.7113	-0.0712
Н	-5.1197	-1.3207	-1.6708
Н	-2.6531	-1.5431	-1.5578
С	2.6258	3.4384	-0.5534
Н	1.7547	3.3835	-1.2199
Н	3.4781	3.7570	-1.1730
С	2.3649	4.4837	0.5375
Н	3.2294	4.5852	1.2064
Н	2.1638	5.4686	0.1001
Н	1.4988	4.2020	1.1476
[C ₄ mim][PF ₆] b3lyp/6-31++g(d,p)-d3			
С	1.0405	1.3134	0.5525
Ν	1.2308	2.3613	-0.2562
С	2.5591	2.3801	-0.6460
С	3.1660	1.3131	-0.0515
Ν	2.1980	0.6584	0.6925
С	0.1757	3.2827	-0.6996
С	2.3727	-0.5899	1.4694
С	2.8266	-1.7720	0.6050
Н	0.0956	1.0205	0.9860
Н	2.9503	3.1385	-1.3066
Н	4.1870	0.9681	-0.0972
Н	0.1498	3.2931	-1.7914
Н	-0.7796	2.9153	-0.3243
Н	0.3805	4.2857	-0.3165
Н	1.4028	-0.7983	1.9265
Н	3.0967	-0.3802	2.2640
Н	2.9907	-2.6095	1.2973
Н	3.8094	-1.5532	0.1612
Р	-2.2033	-0.2853	0.0317
F	-2.3033	-1.7941	-0.5604
F	-2.0064	1.2629	0.6490
F	-0.9803	0.0611	-1.0468
F	-3.3487	-0.5826	1.1400
F	-1.0268	-0.7873	1.1154
F	-3.2989	0.2732	-1.0281

	С	1.8292	-2.1888	-0.4851
	Н	1.6638	-1.3564	-1.1813
	Н	0.8529	-2.3906	-0.0292
	С	2.3054	-3.4184	-1.2667
	Н	1.5764	-3.6933	-2.0364
	Н	3.2659	-3.2327	-1.7658
	Н	2.4346	-4.2857	-0.6066
[C4mim][Tf2N]	b3lyp/6-31++g(d,p)-d3			
	С	-3.4892	0.6380	-1.2736
	С	-3.0577	1.1553	0.1026
	С	-1.1732	-2.4615	2.9321
	Ν	-2.9608	0.0712	1.1064
	С	-4.0063	-0.4601	1.8396
	С	-3.4908	-1.4663	2.6033
	Ν	-2.1386	-1.5378	2.3184
	С	-1.8398	-0.5977	1.4100
	Н	-2.7615	-0.1096	-1.6158
	Н	-4.4612	0.1293	-1.1958
	Н	-3.7722	1.8846	0.4976
	Н	-2.0743	1.6288	0.0484
	Н	-0.9917	-2.1634	3.9682
	Н	-1.5848	-3.4728	2.9023
	Н	-0.2442	-2.4301	2.3593
	Н	-5.0128	-0.0794	1.7579
	Н	-3.9601	-2.1260	3.3169
	Н	-0.8502	-0.4068	0.9833
	Ν	0.9024	-0.0556	0.1309
	S	1.2844	1.4730	-0.2822
	S	1.8475	-1.3663	-0.0657
	0	3.2906	-1.1452	-0.0953
	0	2.2688	1.6406	-1.3479
	0	0.0047	2.2021	-0.3373
	С	2.1012	2.1571	1.2787
	С	1.3912	-1.9822	-1.7936
	F	3.2403	1.5150	1.5506
	F	2.3630	3.4603	1.1074
	F	1.2721	2.0247	2.3344
	F	2.0223	-3.1395	-2.0352
	F	1.7320	-1.0944	-2.7314

F	0.0614	-2.1988	-1.8739
Ο	1.2749	-2.4009	0.8154
С	-3.5758	1.7792	-2.2978
Н	-4.2955	2.5325	-1.9456
Н	-2.6016	2.2816	-2.3564
С	-3.9882	1.2896	-3.6907
Н	-4.0361	2.1232	-4.4003
Н	-3.2686	0.5605	-4.0826
Н	-4.9754	0.8101	-3.6712
[C4mim][TFA] b3lyp/6-31++g(d,p)-d3			
С	-1.0148	-1.3133	0.2174
Ν	-1.0911	-2.5863	-0.1911
С	-2.4139	-2.9929	-0.1601
С	-3.1464	-1.9285	0.2781
Ν	-2.2544	-0.8959	0.5107
С	0.0518	-3.4129	-0.5922
С	-2.6071	0.4679	0.9387
С	-3.1015	1.3235	-0.2272
Н	-0.1049	-0.7109	0.3041
Н	-2.7092	-3.9910	-0.4427
Н	-4.2056	-1.8172	0.4479
Н	-0.0999	-3.7595	-1.6164
Н	0.9551	-2.8021	-0.5326
Н	0.1302	-4.2687	0.0816
Н	-1.7135	0.9012	1.3920
Н	-3.3717	0.3734	1.7143
Н	-3.9707	0.8395	-0.6909
Н	-2.3142	1.3741	-0.9892
С	2.4071	-0.0846	0.0620
С	3.6690	0.8429	0.0152
Ο	1.3815	0.4926	0.4989
Ο	2.5654	-1.2503	-0.3505
F	3.5202	1.8169	-0.9289
F	3.8808	1.4795	1.1986
F	4.8176	0.1910	-0.2818
С	-3.4754	2.7375	0.2280
Н	-4.2535	2.6770	1.0009
Н	-2.6023	3.2070	0.6995
С	-3.9664	3.6125	-0.9273

	Н	-4.8550	3.1793	-1.4024
	Н	-4.2299	4.6169	-0.5785
	Н	-3.1937	3.7183	-1.6978
[2-me-Py][BF ₄]	b3lyp/6-31++g(d,p)-d3			
	С	-1.8337	0.9418	0.0375
	С	-3.0986	0.3851	-0.1476
	С	-3.2535	-1.0027	-0.1523
	С	-2.1438	-1.8329	0.0261
	С	-0.9002	-1.2467	0.2071
	Ν	-0.7924	0.0963	0.2124
	Н	-3.9503	1.0416	-0.2900
	Н	-4.2397	-1.4346	-0.2984
	Н	-2.2339	-2.9132	0.0212
	Н	0.0344	-1.7812	0.3464
	В	2.4194	-0.0823	-0.0675
	F	1.6354	1.0424	0.4886
	F	2.0818	-1.2058	0.7267
	F	1.9326	-0.2804	-1.3692
	F	3.7542	0.2228	-0.0178
	Н	0.1729	0.5041	0.3377
	С	-1.5383	2.4123	0.0491
	Н	-1.0810	2.7101	0.9996
	Н	-0.8256	2.6677	-0.7436
	Н	-2.4532	2.9905	-0.0978
[1-me-Py][BF ₄]	b31yp/6-31++g(a,p)-a3			
	C	-2.1618	0.8865	-0.7671
	C	-2.9205	-0.2344	-1.0385
	С	-2.8219	-1.3353	-0.1975
	С	-1.9721	-1.2817	0.9086
	С	-1.2361	-0.1384	1.1447
	Ν	-1.3257	0.9144	0.3014
	С	-0.4413	2.0911	0.4865
	Н	-2.1897	1.7854	-1.3708
	Н	-3.5649	-0.2367	-1.9096
	Н	-3.4176	-2.2208	-0.3873
	Н	-1.8595	-2.1290	1.5743
	Н	-0.4975	-0.0555	1.9292
	Н	-1.0363	3.0111	0.4140

Н	0.3346	2.0634	-0.2794
Н	0.0374	2.0124	1.4581
В	2.2159	-0.2562	-0.1655
F	2.7249	1.0326	-0.3780
F	1.8217	-0.3805	1.1915
F	1.0970	-0.4665	-1.0086
F	3.2137	-1.2164	-0.4639
Pyridine hf-6-31g(d)			
С	1.1441	-0.7232	0
С	1.2000	0.6737	0.0000
С	-0.0000	1.3869	0.0000
С	-1.2001	0.6736	0.0000
С	-1.1441	-0.7232	-0.0000
Ν	0.0000	-1.4206	0.0000
Н	2.0603	-1.3112	-0.0003
Н	2.1595	1.1834	0.0001
Н	-0.0000	2.4740	-0.0007
Н	-2.1596	1.1832	0.0001
Н	-2.0602	-1.3113	-0.0003
[Py][BF ₄] b3lyp/6-31++g(d,p)-d3			
С	1.4645	-0.9982	-0.0309
С	2.8058	-1.3417	0.0037
С	3.7654	-0.3261	0.0294
С	3.3655	1.0131	0.0194
С	2.0128	1.3085	-0.0162
Ν	1.1155	0.3032	-0.0400
Н	0.6525	-1.7133	-0.0510
Н	3.0882	-2.3874	0.0114
Н	4.8206	-0.5769	0.0573
Н	4.0877	1.8202	0.0386
Н	1.6112	2.3137	-0.0269
Н	0.1155	0.5461	-0.0675
В	-2.5195	-0.0119	0.0084
F	-1.5926	1.0745	-0.1132
F	-3.2083	0.1103	1.2267
F	-3.4195	0.0330	-1.0689
F	-1.7875	-1.2177	-0.0176
С	1.4645	-0.9982	-0.0309
	S52		

С	2.8058	-1.3417	0.0037
С	3.7654	-0.3261	0.0294
Pyrrole b3lyp/6-31++g(d,p)-d3			
Ν	-1.1128	0.0000	0.0000
С	-0.3260	-1.1127	0.0000
С	0.9717	-0.7133	0.0000
С	0.9718	0.7132	0.0000
С	-0.3259	1.1127	0.0000
Н	-2.1053	0.0001	0.0001
Н	-0.7553	-2.0929	-0.0001
Н	1.8281	-1.3567	0.0000
Н	1.8282	1.3566	0.0000
Н	-0.7552	2.0929	0.0000
[P16][DCA] b3lyp/6-31++g(d,p)-d3			
Ν	0.5274	-0.2652	-0.4861
С	0.6979	1.2435	-0.6163
С	0.7614	1.7653	0.8101
С	1.5238	0.6475	1.5250
С	0.9004	-0.6165	0.9513
С	1.4609	-0.9468	-1.4270
С	-0.8746	-0.7096	-0.8138
С	-1.9845	0.0158	-0.0697
Н	-0.1122	1.6352	-1.2353
Н	1.6560	1.4110	-1.1157
Н	1.2851	2.7252	0.8451
Н	-0.2410	1.8887	1.2371
Н	1.4214	0.6761	2.6135
Н	2.5898	0.6978	1.2753
Н	1.5717	-1.4782	0.9315
Н	-0.0196	-0.8785	1.4771
Н	1.3106	-2.0270	-1.3523
Н	2.4835	-0.6869	-1.1451
Н	1.2522	-0.5932	-2.4405
Н	-0.9029	-1.7843	-0.5986
Н	-0.9908	-0.5670	-1.8945
Н	-1.9557	1.0906	-0.2880
Н	-1.8744	-0.1017	1.0157
Ν	5.2205	-0.0787	0.2091

С	4.5389	-1.1457	0.5560
Ν	3.9808	-2.1190	0.8946
С	4.5930	0.8696	-0.4448
Ν	4.0811	1.7516	-1.0229
С	-3.3444	-0.5395	-0.4945
С	-4.4996	0.1444	0.2308
Н	-3.3771	-1.6211	-0.2962
Н	-3.4677	-0.4102	-1.5801
Н	-4.3846	-0.0024	1.3159
Н	-4.4482	1.2296	0.0524
С	-5.8667	-0.3734	-0.2067
С	-7.0144	0.3101	0.5298
Н	-5.9122	-1.4590	-0.0362
Н	-5.9791	-0.2191	-1.2899
Н	-7.9873	-0.0691	0.1930
Н	-6.9413	0.1391	1.6126
Н	-6.9971	1.3951	0.3582
P12-DCA b3lyp/6-31++g(d,p)-d3			
Ν	-1.1730	-0.3689	-0.3976
С	-1.2522	1.1163	-0.7198
С	-1.3040	1.8276	0.6242
С	-0.3833	0.9689	1.4921
С	-0.6591	-0.4656	1.0420
С	-0.2111	-1.0289	-1.3365
С	-2.4946	-1.0675	-0.5587
С	-3.6781	-0.4769	0.1954
Н	-2.0962	1.2875	-1.3716
Н	-0.3393	1.3790	-1.2304
Н	-0.9452	2.8433	0.5245
Н	-2.3106	1.8617	1.0248
Н	-0.5714	1.0825	2.5522
Н	0.6467	1.2298	1.2986
Н	0.2156	-1.0960	1.0549
Н	-1.4341	-0.9313	1.6295
Н	-0.1208	-2.0721	-1.0772
Н	0.7454	-0.5480	-1.2510
Н	-0.5870	-0.9180	-2.3435
Н			
	-2.3276	-2.0911	-0.2518

Н	-4.5339	-1.1150	0.0059
Н	-3.9321	0.5174	-0.1472
Н	-3.5267	-0.4466	1.2664
Ν	3.6133	0.0372	0.0180
С	2.9955	-1.0443	0.4340
Ν	2.4487	-1.9887	0.7983
С	2.8102	0.9190	-0.5199
Ν	2.0945	1.6913	-0.9877
[CMI][HSO ₄] b3lyp/6-31++g(d,p)-d3			
С	-0.5983	0.9519	0.3828
Ν	-0.5996	2.2850	0.3318
С	-1.5192	2.6921	-0.6212
С	-2.0734	1.5650	-1.1469
Ν	-1.4880	0.4901	-0.5020
С	0.3210	3.1346	1.0965
С	-1.6204	-0.9233	-0.8394
Н	0.0336	0.3362	1.0063
Н	-1.6885	3.7336	-0.8425
Н	-2.8125	1.4341	-1.9211
Н	1.2755	2.6061	1.1576
Н	-0.0874	3.3347	2.0906
Н	0.4508	4.0737	0.5567
Н	-2.3286	-1.0247	-1.6644
Н	-0.6321	-1.2734	-1.1703
S	2.2299	-0.5021	-0.2332
О	3.4563	-1.2886	-0.3839
0	1.3134	-0.4352	-1.3966
0	1.2533	-1.4225	0.8407
0	2.3804	0.7924	0.4815
Н	1.8591	-1.7558	1.5259
С	-2.0873	-1.7367	0.3570
0	-2.2277	-1.3197	1.4817
0	-2.3146	-3.0080	-0.0202
Н	-2.5568	-3.5039	0.7847
[EMIM][HSO ₄] b3lyp/6-31++g(d,p)-d3			
С	1.1571	0.5098	-0.7801
Ν	1.0751	1.7189	-0.2139
С	1.6381	1.6572	1.0492
	S55		

С	2.0855	0.3806	1.2243
Ν	1.7776	-0.3167	0.0686
С	0.3918	2.8802	-0.7850
С	2.0953	-1.7304	-0.1955
С	3.5881	-1.9437	-0.4060
Н	0.7954	0.2485	-1.7615
Н	1.6657	2.5166	1.7000
Н	2.5842	-0.0896	2.0565
Н	0.1746	2.6768	-1.8324
Н	1.0438	3.7507	-0.7051
Н	-0.5364	3.0603	-0.2407
Н	1.7276	-2.3059	0.6566
Н	1.5229	-2.0195	-1.0775
Н	3.7744	-3.0060	-0.5894
Н	3.9457	-1.3736	-1.2688
Н	4.1578	-1.6421	0.4780
S	-2.2311	-0.3397	0.1025
0	-3.6132	-0.7805	0.4344
0	-1.4483	0.1496	1.2609
0	-1.4009	-1.7232	-0.2979
0	-2.1651	0.5331	-1.1004
Н	-1.8419	-2.1524	-1.0542
ethanolamine formate m062x/aug-cc-pvdz	Z		
Ν	0.3439	1.1173	0.2358
Н	-1.1439	0.8179	-0.2512
С	2.6561	0.1774	0.2230
С	1.1987	-0.0044	-0.1787
0	3.4684	-0.8946	-0.2279
Н	0.6762	1.9828	-0.1885
Н	3.0600	1.0849	-0.2451
Н	2.7306	0.2971	1.3166
Н	0.7992	-0.9237	0.2718
Н	1.1268	-0.1097	-1.2680
Н	3.1984	-1.6992	0.2325
С	-2.6229	-0.3076	0.2550
0	-3.7192	-0.7987	0.1024
0	-2.0818	0.5474	-0.5862
Н	-1.9925	-0.5509	1.1342
Н	0.4078	1.2541	1.2441

ethanolamine acetate	m062x/aug-cc-pvdz			
Ν	1	-0.9229	-1.6381	0.2205
(2	-1.7577	0.6546	0.1701
(2	-2.0284	-0.7818	-0.2330
()	-2.8612	1.4331	-0.2810
H	ł	-1.1025	-2.6030	-0.0502
H	ł	-0.8794	-1.6326	1.2391
H	ł	-1.6561	0.7209	1.2649
H	ł	-0.8195	1.0068	-0.2851
H	ł	-2.0895	-0.8479	-1.3263
H	ł	-2.9952	-1.0969	0.1852
H	ł	-2.7036	2.3506	-0.0304
(2	1.9325	0.0828	0.1196
(2	3.1726	0.7308	-0.4310
()	1.5089	0.2814	1.2473
()	1.3410	-0.7264	-0.7444
H	ł	3.6421	1.3551	0.3328
H	ł	3.8711	-0.0433	-0.7713
H	ł	2.9031	1.3414	-1.3019
H	ł	0.4657	-1.1068	-0.3300
4ip ethanolamine form	nate m()62x/aug-cc-pvdz		
Ν	1	-4.0004	1.3444	1.5533
(2	-1.7194	0.6776	2.2356
(2	-3.2165	0.4676	2.4430
()	-0.9678	-0.2202	3.0385
H	I	-4.8686	1.6201	2.0064
H	ł	-4.2665	0.8184	0.7194
H	I	-1.4633	0.5573	1.1702
H	I	-1.4437	1.6968	2.5283
H	I	-3.4611	0.6959	3.4841
ŀ	ł	-3.4615	-0.5888	2.2673
H	I	-0.8505	-1.0397	2.5183
(2	-2.1213	2.8085	-0.6450
()	-2.5821	1.8185	-1.1971
()	-2.5325	3.2342	0.5356
H	ł	-3.1820	2.5239	0.9575
١	1	-4.0301	-3.3118	0.5079
(2	-1.7921	-2.3508	0.4029

С	-2.7292	-3.2494	1.1892
0	-0.5961	-2.1977	1.1596
Н	-4.6988	-3.8268	1.0774
Н	-3.9387	-3.8263	-0.3683
Н	-1.5710	-2.7969	-0.5760
Н	-2.2721	-1.3751	0.2318
Н	-2.8838	-2.8237	2.1861
Н	-2.2741	-4.2393	1.3111
Н	0.1242	-1.9185	0.5613
С	-4.7686	-0.8724	-1.5719
0	-4.2207	-1.7277	-2.2498
0	-4.9297	-0.9877	-0.2594
Н	-4.5674	-1.9191	0.0674
Ν	1.6940	0.5705	1.7720
С	4.0955	0.4716	1.3614
С	2.9758	0.0914	2.3154
0	5.3128	-0.1054	1.8052
Н	0.9395	0.4127	2.4423
Н	1.4718	0.0153	0.9425
Н	3.8340	0.1220	0.3544
Н	4.1852	1.5664	1.3074
Н	3.1385	0.5542	3.2937
Н	2.9777	-0.9986	2.4520
Н	5.8047	-0.3654	1.0098
С	2.2489	2.9095	-0.4406
0	2.4417	1.8560	-1.0329
0	1.8389	2.9748	0.8123
Н	1.7597	2.0010	1.2221
Ν	3.2184	-3.2384	-0.8700
С	4.9135	-1.5621	-1.3909
С	4.4936	-2.6527	-0.4230
0	6.0490	-0.9119	-0.8194
Н	2.9842	-4.0443	-0.2913
Н	3.3004	-3.5841	-1.8267
Н	5.1740	-2.0008	-2.3627
Н	4.0922	-0.8496	-1.5452
Н	4.3354	-2.2205	0.5711
Н	5.2839	-3.4071	-0.3470
Н	6.3731	-0.2441	-1.4390
С	1.1251	-0.8404	-1.7367

О	1.7020	-1.0745	-2.7847
0	1.4214	-1.4793	-0.6051
Н	2.1955	-2.2565	-0.7688
Н	-1.3553	3.4220	-1.0714
Н	-5.1806	0.0325	-1.9672
Н	0.3112	-0.1521	-1.6423
Н	2.4284	3.8652	-0.8870
4IP ethanolamine acetate	m062x/aug-cc-pvdz		
Ν	4.0838	1.5346	-1.7584
С	1.6800	1.0196	-2.0614
С	3.0827	0.8924	-2.6638
0	0.7708	0.1356	-2.7511
Н	4.8589	1.9241	-2.2705
Н	4.4324	0.8668	-1.0792
Н	1.7186	0.7886	-1.0083
Н	1.3221	2.0313	-2.1754
Н	3.1089	1.3762	-3.6297
Н	3.3107	-0.1566	-2.8089
Н	0.7437	-0.7160	-2.2623
С	2.4488	2.8024	0.8898
С	1.8285	3.8387	1.7860
0	2.4532	1.6005	1.1317
0	2.9797	3.3266	-0.1955
Н	1.4469	3.3759	2.6816
Н	2.5698	4.5882	2.0314
Н	1.0289	4.3345	1.2490
Н	3.4255	2.6521	-0.8445
Ν	4.2076	-3.1339	-0.9679
С	2.0378	-2.1396	-0.3444
С	2.7760	-3.0205	-1.3514
0	0.7571	-1.8425	-0.9403
Н	4.7485	-3.6546	-1.6383
Н	4.3414	-3.5091	-0.0398
Н	1.9145	-2.6637	0.5961
Н	2.5961	-1.2358	-0.1628
Н	2.7230	-2.5434	-2.3188
Н	2.2799	-3.9817	-1.4211
Н	0.0872	-1.5859	-0.2727
С	5 1568	-1 0141	1 2639

С	5.3869	0.2472	2.0348
0	5.0317	-2.1249	1.7315
0	5.0532	-0.7887	-0.0642
Н	5.5943	0.0140	3.0668
Н	6.2065	0.8010	1.5962
Н	4.4873	0.8456	1.9574
Н	4.8160	-1.6421	-0.5649
Ν	-1.9266	0.5368	-1.7439
С	-4.3679	0.1409	-1.8264
С	-3.0032	-0.2629	-2.3996
0	-5.2712	-0.9805	-1.9327
Н	-1.0603	0.5235	-2.2737
Н	-1.7438	0.1646	-0.8205
Н	-4.2393	0.4198	-0.7938
Н	-4.7576	0.9991	-2.3599
Н	-2.9629	-0.0883	-3.4649
Н	-2.8672	-1.3224	-2.2252
Н	-5.7874	-1.0332	-1.1104
С	-3.1300	2.7999	0.2755
С	-3.5241	4.1474	0.8233
0	-3.2057	1.7613	0.9261
0	-2.7078	2.8593	-0.9647
Н	-3.8647	4.0494	1.8415
Н	-2.6735	4.8156	0.7714
Н	-4.3046	4.5679	0.2014
Н	-2.3755	1.9357	-1.3732
Ν	-2.9214	-3.2437	0.8897
С	-4.5563	-1.4442	1.3118
С	-4.2937	-2.7543	0.5721
0	-5.8300	-0.9701	0.7897
Н	-2.6842	-4.0677	0.3608
Н	-2.7958	-3.4145	1.8773
Н	-4.6185	-1.6072	2.3799
Н	-3.7825	-0.7236	1.1097
Н	-4.3600	-2.5571	-0.4847
Н	-5.0563	-3.4751	0.8418
Н	-6.0665	-0.1229	1.1897
С	-1.1349	-0.9184	2.1899
С	-0.4930	0.4139	2.3994
0	-1.6266	-1.6196	3.0442

Ο	-1.1920	-1.2902	0.8778
Н	-0.3650	0.5810	3.4576
Н	0.4564	0.5034	1.8901
Н	-1.1768	1.1518	1.9946
Н	-1.8449	-2.0912	0.7564
4IP [C ₄ mim]OH m062x/aug-cc-pvdz			
С	-0.6543	1.7000	2.2680
Ν	-1.9646	1.4274	2.2980
С	-2.7548	2.5890	2.2957
С	-1.7928	3.5795	2.2405
Ν	-0.5196	3.0251	2.2245
С	-2.5007	0.0758	2.3844
С	0.7531	3.7333	2.0693
С	1.0601	4.0017	0.6004
С	2.4693	4.5402	0.3850
С	2.7584	4.7654	-1.0963
Н	0.1737	0.9979	2.2753
Н	-4.5569	2.1555	1.9451
Н	-1.8961	4.6559	2.2094
Н	-3.2848	-0.0496	1.6373
Н	-1.7030	-0.6488	2.2102
Н	-2.9244	-0.0890	3.3795
Н	1.5300	3.1030	2.5116
Н	0.6802	4.6628	2.6401
Н	0.3172	4.6968	0.1859
Н	0.9398	3.0595	0.0471
Н	3.1888	3.8186	0.7943
Н	2.6024	5.4747	0.9451
Н	3.7988	5.0621	-1.2664
Н	2.1125	5.5496	-1.5073
Н	2.5737	3.8461	-1.6660
Ο	-5.4452	1.7754	1.6780
Н	-5.9968	1.8252	2.4677
С	-4.1315	-1.3907	-1.1152
Ν	-5.0642	-1.9955	-1.8958
С	-5.6215	-1.1304	-2.8179
С	-5.0213	0.0713	-2.6189
Ν	-4.1141	-0.1156	-1.5900
С	-5.4214	-3.4022	-1.7963

С	-3.2801	0.9458	-1.0255
С	-2.5632	1.7778	-2.0806
С	-1.6715	2.8348	-1.4273
С	-0.7695	3.5330	-2.4406
Н	-3.0787	-2.3581	0.1752
Н	-6.3805	-1.4404	-3.5213
Н	-5.1663	1.0207	-3.1119
Н	-6.4871	-3.5051	-1.5789
Н	-5.1917	-3.9154	-2.7333
Н	-4.8405	-3.8460	-0.9874
Н	-2.5430	0.4507	-0.3852
Н	-3.9046	1.5817	-0.3876
Н	-3.2879	2.2720	-2.7381
Н	-1.9544	1.1141	-2.7106
Н	-1.0625	2.3502	-0.6495
Н	-2.2989	3.5754	-0.9160
Н	-0.1856	4.3317	-1.9733
Н	-1.3642	3.9763	-3.2470
Н	-0.0667	2.8248	-2.8970
0	-2.5735	-2.9073	0.8370
Н	-3.1801	-3.0080	1.5813
С	2.5751	-4.3980	0.6213
Ν	3.6776	-3.9885	-0.0154
С	3.8225	-2.5933	0.0173
С	2.7020	-2.2119	0.7304
Ν	1.9506	-3.3214	1.0885
С	4.6177	-4.9032	-0.6536
С	0.6837	-3.3226	1.8285
С	0.7226	-2.3563	3.0065
С	-0.4961	-2.5294	3.9093
С	-0.5644	-1.4517	4.9860
Н	2.2391	-5.4179	0.7426
Н	4.9403	-1.7113	-1.2087
Н	2.3607	-1.2226	1.0012
Н	5.3680	-4.2999	-1.1631
Н	5.1035	-5.5342	0.0940
Н	4.0994	-5.5312	-1.3811
Н	0.5134	-4.3481	2.1700
Н	-0.1314	-3.0572	1.1468
Н	0.7569	-1.3232	2.6322

I	Н	1.6432	-2.5186	3.5825
I	Н	-0.4637	-3.5230	4.3742
I	Н	-1.4013	-2.5016	3.2908
I	H	-1.4470	-1.5730	5.6220
I	Н	-0.6098	-0.4530	4.5345
I	H	0.3225	-1.4836	5.6290
(С	5.4676	-1.2569	-1.9319
I	Η	4.8612	-0.5922	-2.2843
(C	2.9909	1.0920	-0.5109
1	N	4.0707	1.6155	-1.1463
(C	3.9269	1.6100	-2.5216
(C	2.7084	1.0615	-2.7720
1	N	2.1641	0.7543	-1.5387
(C	5.2659	2.0910	-0.4686
(C	0.8417	0.1627	-1.3569
(C	0.6853	-1.2086	-2.0021
(C	-0.7164	-1.7510	-1.7324
(C	-0.9162	-3.1741	-2.2392
I	Н	2.6281	0.9925	1.3156
I	Н	4.6864	1.9943	-3.1871
I	Н	2.1904	0.8751	-3.7015
I	Н	5.5070	3.1027	-0.8042
I	H	5.0722	2.0983	0.6042
I	Η	6.1062	1.4248	-0.6819
I	H	0.0966	0.8480	-1.7756
I	Н	0.6760	0.1010	-0.2754
I	Н	1.4429	-1.8924	-1.6016
I	Н	0.8513	-1.1310	-3.0844
I	Н	-1.4545	-1.0864	-2.2007
I	Н	-0.9198	-1.7182	-0.6522
I	Н	-1.9416	-3.5144	-2.0620
I	Н	-0.2404	-3.8706	-1.7289
I	Н	-0.7151	-3.2392	-3.3147
(С	2.3760	0.9302	2.2872
I	Н	3.0460	0.3732	2.7021

4IP [C₄mim][BF₄] mp2/aug-cc-pvdz

С	-5.5231	-1.8890	1.2827
Ν	-4.9621	-1.2354	2.3041
С	-4.9609	0.1183	2.0134

С	-5.5446	0.2649	0.7938
Ν	-5.8898	-1.0008	0.3552
С	-4.3318	-1.8914	3.4505
С	-6.3866	-1.3478	-0.9887
С	-5.3212	-1.1341	-2.0683
С	-5.8655	-1.4761	-3.4611
С	-4.8147	-1.2827	-4.5591
Н	-5.6090	-2.9623	1.2148
Н	-4.4867	0.8486	2.6478
Н	-5.6364	1.1358	0.1651
Н	-3.2907	-1.5684	3.5111
Н	-4.8630	-1.6302	4.3697
Н	-4.3538	-2.9668	3.2766
Н	-7.2795	-0.7414	-1.1760
Н	-6.6841	-2.3981	-0.9481
Н	-4.4680	-1.7760	-1.8277
Н	-4.9672	-0.0978	-2.0402
Н	-6.7434	-0.8507	-3.6812
Н	-6.2166	-2.5175	-3.4716
Н	-5.2211	-1.5329	-5.5456
Н	-3.9420	-1.9220	-4.3830
Н	-4.4646	-0.2442	-4.5917
В	-3.6113	-4.2847	0.6269
F	-4.4977	-4.6092	1.6884
F	-2.7911	-5.3609	0.3126
F	-4.3767	-3.8846	-0.4852
F	-2.8200	-3.1796	1.0578
С	-0.4863	3.9035	0.9711
Ν	0.0584	3.9684	2.1893
С	-0.2560	5.1929	2.7515
С	-1.0151	5.8650	1.8434
Ν	-1.1463	5.0422	0.7376
С	0.9190	2.9437	2.7848
С	-1.9559	5.3187	-0.4651
С	-3.4543	5.3653	-0.1492
С	-4.2950	5.4493	-1.4294
С	-5.7980	5.4447	-1.1376
Н	-0.4006	3.0750	0.2841
Н	0.0904	5.4743	3.7333
Н	-1.4683	6.8424	1.8850

Н	0.5640	2.7223	3.7941
Н	0.8769	2.0552	2.1583
Н	1.9492	3.3009	2.7988
Н	-1.7457	4.5086	-1.1636
Н	-1.5980	6.2606	-0.8946
Н	-3.6755	6.2218	0.5043
Н	-3.7102	4.4528	0.3975
Н	-4.0532	4.5857	-2.0585
Н	-4.0270	6.3532	-1.9957
Н	-6.3802	5.5269	-2.0622
Н	-6.0875	6.2782	-0.4851
Н	-6.0848	4.5097	-0.6436
В	-2.9410	1.7614	-0.4672
F	-1.8154	2.2754	-1.1682
F	-2.8937	0.3671	-0.4720
F	-2.9105	2.2504	0.8605
F	-4.1237	2.2112	-1.0955
С	1.2401	-2.2924	-1.6006
Ν	0.9935	-1.0187	-1.9269
С	-0.2271	-0.6469	-1.3907
С	-0.7244	-1.7342	-0.7364
Ν	0.2088	-2.7509	-0.8807
С	1.8662	-0.1613	-2.7314
С	0.1228	-4.1007	-0.2953
С	0.3550	-4.0983	1.2182
С	0.2669	-5.5181	1.7944
С	0.4853	-5.5514	3.3101
Н	2.1399	-2.8427	-1.8486
Н	-0.6262	0.3488	-1.5008
Н	-1.6418	-1.8806	-0.1878
Н	2.0311	0.7744	-2.1990
Н	2.8213	-0.6623	-2.8836
Н	1.3857	0.0346	-3.6947
Н	0.8744	-4.7096	-0.8065
Н	-0.8664	-4.5056	-0.5172
Н	-0.4147	-3.4728	1.6838
Н	1.3344	-3.6519	1.4382
Н	1.0127	-6.1610	1.3046
Н	-0.7191	-5.9292	1.5501
Н	0.4156	-6.5738	3.6985

Н	-0.2683	-4.9467	3.8293
Н	1.4733	-5.1576	3.5807
В	2.6153	2.5368	-0.0436
F	2.3796	3.8691	0.2994
F	3.2442	2.4511	-1.3065
F	3.4508	1.9286	0.9201
F	1.3854	1.8364	-0.0937
С	5.7620	0.6902	-0.7326
Ν	6.3962	0.9902	-1.8694
С	7.6401	0.3867	-1.8562
С	7.7458	-0.2747	-0.6721
Ν	6.5691	-0.0658	0.0177
С	5.7746	1.6442	-3.0212
С	6.1775	-0.6946	1.2926
С	6.0084	0.3246	2.4217
С	5.6247	-0.3578	3.7415
С	5.4258	0.6424	4.8847
Н	4.7659	1.0075	-0.4641
Н	8.3202	0.4641	-2.6891
Н	8.5348	-0.8914	-0.2738
Н	6.5005	2.3111	-3.4916
Н	5.4544	0.8668	-3.7184
Н	4.9128	2.2107	-2.6707
Н	6.9570	-1.4252	1.5239
Н	5.2556	-1.2421	1.0884
Н	5.2313	1.0443	2.1404
Н	6.9436	0.8873	2.5516
Н	6.4001	-1.0852	4.0212
Н	4.7017	-0.9345	3.5940
Н	5.1467	0.1332	5.8140
Н	4.6338	1.3614	4.6439
Н	6.3429	1.2121	5.0785
В	4.7543	-2.2896	-1.7018
F	4.9766	-1.4086	-2.7900
F	3.9866	-1.5845	-0.7296
F	4.0100	-3.3984	-2.1394
F	5.9644	-2.6824	-1.1343

 $8 IP \ [C_2 mim] [BF_4] \quad mp2/aug\text{-cc-pvdz}$

Ν

0.7977

-0.5024

-0.0619

С	-0.2289	-1.3338	-0.2268
Ν	-1.1649	-0.7178	-0.9434
С	-0.7271	0.5533	-1.2460
С	0.5123	0.6903	-0.6937
С	-2.4763	-1.2868	-1.2655
С	-2.6981	-1.3801	-2.7649
С	1.9802	-0.8002	0.7410
Н	-0.3117	-2.3274	0.1989
Н	-1.3544	1.2621	-1.7734
Н	1.2027	1.5276	-0.6723
Н	1.7238	-0.7603	1.8046
Н	2.3212	-1.8133	0.5000
Н	2.7645	-0.0762	0.4984
Н	-3.2210	-0.6315	-0.7970
Н	-2.4953	-2.2777	-0.7939
Н	-3.7111	-1.7672	-2.9499
Н	-2.6320	-0.3915	-3.2438
Н	-1.9712	-2.0678	-3.2169
В	-0.4393	-4.5007	-0.9490
F	-0.4886	-5.8783	-1.1536
F	-1.3316	-4.1352	0.0997
F	-0.7811	-3.7844	-2.1083
F	0.8740	-4.1149	-0.5518
Ν	1.9469	-4.8008	2.0795
С	0.6393	-5.0142	2.2135
Ν	0.3314	-6.1638	1.6111
С	1.4707	-6.6835	1.0449
С	2.4899	-5.8293	1.3440
С	-1.0166	-6.7503	1.5603
С	-1.6168	-6.8773	2.9507
С	2.6841	-3.6659	2.6349
Н	-0.0683	-4.3492	2.7031
Н	1.4502	-7.5916	0.4549
Н	3.5443	-5.8525	1.0923
Н	3.4465	-3.3399	1.9195
Н	1.9732	-2.8576	2.8311
Н	3.1794	-3.9693	3.5663
Н	-0.8999	-7.7250	1.0711
Н	-1.6215	-6.1107	0.9102
Н	-2.6001	-7.3615	2.8741

Н	-0.9804	-7.4871	3.6078
Н	-1.7657	-5.8864	3.4020
В	-1.5133	-2.2043	2.7954
F	-1.8213	-1.3834	3.8808
F	-2.1609	-1.7383	1.6330
F	-1.9163	-3.5390	3.0496
F	-0.1092	-2.1906	2.5597
Ν	2.6393	-0.1660	-2.9468
С	3.4536	-0.8233	-2.1256
Ν	2.9899	-2.0617	-1.9698
С	1.8321	-2.2056	-2.7069
С	1.6139	-1.0096	-3.3230
С	3.7188	-3.1237	-1.2646
С	4.3288	-4.0940	-2.2638
С	2.8437	1.2053	-3.3874
Н	4.3525	-0.4266	-1.6609
Н	1.2457	-3.1187	-2.6987
Н	0.8163	-0.6845	-3.9808
Н	3.8449	1.5153	-3.0757
Н	2.7702	1.2355	-4.4811
Н	2.0960	1.8647	-2.9298
Н	2.9974	-3.6225	-0.6034
Н	4.4922	-2.6210	-0.6731
Н	4.9628	-4.8154	-1.7290
Н	3.5471	-4.6500	-2.8021
Н	4.9467	-3.5378	-2.9806
В	6.2726	-0.9033	-3.2300
F	7.5537	-0.9709	-3.7850
F	6.2465	-1.6588	-2.0168
F	5.2997	-1.4107	-4.0957
F	5.9543	0.4463	-2.8960
Ν	7.3512	1.7043	-0.8621
С	7.5616	0.4524	-0.4657
Ν	8.5591	-0.0601	-1.1827
С	8.9854	0.8879	-2.0850
С	8.2272	1.9991	-1.8812
С	9.0251	-1.4531	-1.1243
С	8.4478	-2.1902	0.0681
С	6.2459	2.5354	-0.3997
Н	7.0045	-0.0505	0.3189

Н	9.7522	0.6715	-2.8185
Н	8.2079	2.9524	-2.3952
Н	5.6550	2.8565	-1.2654
Н	5.6054	1.9210	0.2411
Н	6.6250	3.4060	0.1487
Н	10.1230	1 -1.4157	6 -1.08435
Н	8.7077	-1.9138	-2.0684
Н	8.8617	-3.2069	0.0851
Н	8.7007	-1.6980	1.0182
Н	7.3556	-2.2663	-0.0107
В	5.2059	-1.2172	1.6853
F	4.1188	-1.0710	2.5712
F	5.3962	-2.5806	1.3898
F	6.3695	-0.6529	2.2238
F	4.9138	-0.5258	0.4708
Ν	-8.6937	2.6639	-0.1506
С	-7.6010	2.2682	-0.7977
Ν	-7.7352	2.5683	-2.0847
С	-8.9629	3.1637	-2.2752
С	-9.5697	3.2167	-1.0570
С	-6.7438	2.2446	-3.1157
С	-6.1003	3.4990	-3.6805
С	-8.9734	2.3508	1.2450
Н	-6.7678	1.7368	-0.3509
Н	-9.3011	3.4872	-3.2526
Н	-10.5456	6 3.5824	4 -0.7615
Н	-9.5755	1.4355	1.2785
Н	-8.0178	2.1811	1.7518
Н	-9.4982	3.1980	1.7013
Н	-7.2658	1.6536	-3.8802
Н	-6.0065	1.5982	-2.6261
Н	-5.3750	3.2154	-4.4556
Н	-6.8438	4.1681	-4.1387
Н	-5.5658	4.0301	-2.8828
В	-4.3690	1.8818	-0.2064
F	-3.0342	1.5753	0.1030
F	-4.9516	0.7500	-0.8656
F	-4.4410	2.9749	-1.0870
F	-5.1078	2.1372	0.9589
Ν	-4.9349	-1.9817	0.8272

С	-5.6534	-1.9238	-0.2915
Ν	-5.5846	-3.1023	-0.9077
С	-4.7866	-3.9448	-0.1576
С	-4.3734	-3.2370	0.9321
С	-6.3357	-3.4319	-2.1238
С	-7.3705	-4.5133	-1.8595
С	-4.7732	-0.8448	1.7362
Н	-6.1794	-1.0496	-0.6595
Н	-4.5598	-4.9578	-0.4689
Н	-3.6966	-3.5008	1.7389
Н	-3.9399	-0.2183	1.3986
Н	-5.7065	-0.2731	1.7222
Н	-4.5528	-1.2302	2.7370
Н	-5.6100	-3.7384	-2.8911
Н	-6.8227	-2.4978	-2.4345
Н	-7.9141	-4.7290	-2.7893
Н	-6.8996	-5.4454	-1.5147
Н	-8.0876	-4.1568	-1.1100
В	-8.5119	-0.5977	-0.7504
F	-9.6970	0.1228	-0.8741
F	-7.6485	-0.3030	-1.8560
F	-8.7072	-1.9784	-0.7082
F	-7.8385	-0.1777	0.4393
Ν	2.1834	6.5287	0.4101
С	0.8915	6.3065	0.6330
Ν	0.2959	6.0419	-0.5284
С	1.2444	6.0813	-1.5269
С	2.4326	6.3844	-0.9358
С	-1.0944	5.5894	-0.6612
С	-1.1727	4.0902	-0.8957
С	3.1657	6.7918	1.4570
Н	0.4133	6.3375	1.6094
Н	1.0090	5.8439	-2.5575
Н	3.4315	6.4579	-1.3479
Н	2.6334	6.8144	2.4137
Н	3.8765	5.9595	1.4642
Н	3.6623	7.7487	1.2543
Н	-1.5517	6.1646	-1.4784
Н	-1.5973	5.8583	0.2759
Н	-2.2242	3.7785	-0.9662

	Н	-0.6428	3.8119	-1.8198
	Н	-0.6956	3.5773	-0.0515
	В	3.1225	3.3402	-0.6451
	F	3.3598	1.9491	-0.4857
	F	1.7497	3.5602	-0.3660
	F	3.4255	3.7334	-1.9536
	F	3.9206	4.0667	0.2604
	Ν	2.4246	1.5098	3.0055
	С	1.3663	1.8522	2.2739
	Ν	0.3007	1.1970	2.7306
	С	0.6822	0.4201	3.8019
	С	2.0222	0.6143	3.9694
	С	-1.0612	1.3317	2.1921
	С	-2.0332	1.8324	3.2442
	С	3.7682	2.0488	2.8394
	Н	1.3693	2.5889	1.4726
	Н	-0.0291	-0.2220	4.3108
	Н	2.7295	0.1760	4.6629
	Н	3.7771	2.6732	1.9408
	Н	4.0052	2.6736	3.7090
	Н	4.4724	1.2131	2.7482
	Н	-1.3648	0.3533	1.7926
	Н	-0.9910	2.0412	1.3627
	Н	-2.9999	2.0184	2.7545
	Н	-2.1775	1.0789	4.0306
	Н	-1.6553	2.7667	3.6795
	В	0.7779	4.5925	3.2089
	F	0.5855	5.9518	3.5440
	F	-0.1779	4.2459	2.2006
	F	0.6364	3.7521	4.3000
	F	2.0730	4.4659	2.6397
[NH ₂ -Emim][BF ₄]	m062x/aug-cc-pvdz			
	С	-0.3232	-1.2378	0.8721
	Ν	0.7456	-1.7149	0.2415
	С	0.4317	-1.9024	-1.0838
	С	-0.8707	-1.5316	-1.2390
	Ν	-1.3220	-1.1297	-0.0027
	С	2.0373	-2.0069	0.8566
	С	-2.6432	-0.5667	0.2792

С	-2.7016	0.9188	-0.0591
Ν	-4.0575	1.3920	0.2137
Н	-0.3675	-0.9673	1.9191
Н	1.1573	-2.2749	-1.7950
Н	-1.5083	-1.5165	-2.1135
Н	2.8056	-1.4182	0.3509
Н	1.9903	-1.7208	1.9089
Н	2.2394	-3.0782	0.7643
Н	-2.8501	-0.7327	1.3423
Н	-3.3755	-1.1244	-0.3125
Н	-2.4910	1.0510	-1.1271
Н	-1.9157	1.4473	0.4994
Н	-4.1970	1.4874	1.2177
В	1.6982	1.3398	-0.0854
F	2.5566	0.5214	-0.8545
F	2.1240	2.6762	-0.1551
F	0.3819	1.2273	-0.5835
F	1.7216	0.9032	1.2624
Н	-4.1794	2.3230	-0.1756

[NH ₂ -Emim][BF ₄]-SO ₂	m062x/aug-cc-pvdz		
С	-2.7383	-0.8225	-0.7413
Ν	-3.6835	-0.9922	0.1786
С	-3.2075	-1.8405	1.1514
С	-1.9399	-2.1872	0.7893
Ν	-1.6724	-1.5402	-0.3961
С	-4.9660	-0.2976	0.2119
С	-0.3917	-1.5408	-1.1070
С	0.7353	-1.0678	-0.1942
Ν	1.9226	-0.8623	-1.0202
Н	-2.8052	-0.1716	-1.6025
Н	-3.8041	-2.1173	2.0111
Н	-1.2162	-2.8334	1.2689
Н	-4.9314	0.4768	0.9837
Н	-5.1382	0.1620	-0.7631
Н	-5.7545	-1.0231	0.4288
Н	-0.5027	-0.8529	-1.9506
Н	-0.1963	-2.5498	-1.4851
Н	0.9583	-1.8447	0.5475
Н	0.3974	-0.1680	0.3380
Н	1.8121	-0.0020	-1.5544
---	---------	---------	---------
В	-1.7611	1.9717	0.0509
F	-3.0877	2.0435	-0.4369
F	-1.3200	3.2460	0.4343
F	-1.7230	1.0933	1.1565
F	-0.9271	1.4629	-0.9764
S	5.8694	0.2617	-0.0542
0	7.1746	0.2317	0.6093
0	4.8182	-0.5701	0.5434
Н	2.7359	-0.7256	-0.4263

--Effects of long alkyl chains on the prediction

Holbrey and Seddon (*J. Chem. Soc., Dalton Trans.* 1999, 2133–2140) studied a series of 1-alkyl-3-methylimdazolium ($[C_n mim][BF_4]$ with n = 0-18) in deuterated propanone and found that the NMR peaks of protons changed only slightly, indicating that the proton chemical shifts were relatively insensitive to increasing alkyl chain length.

However, the effects of long alkyl chain on the prediction of the calculated proton chemical shifts is still ambiguous. Therefore, we set out to calculate ¹H NMR chemical shifts of a series of 1-alkyl-3-methylimdazolium ($[C_nmim][BF_4]$ with n = 6, 8, 12) ILs by means of RRS method. In the study, $[C_4mim][BF_4]$, the ionic liquids with relatively short alkyl chain, was used as the relative reference standard due to its structural similarity. It is found that the length of alkyl chains in the imidazolium ring has little effect on the accuracy of calculated chemical shifts. The RMS of $[C_{12}mim][BF_4]$ ionic liquid is less than 0.25 ppm.

N⁺- F−⁺B⁻-F

 $\label{eq:constraint} \begin{array}{c} \mbox{1-hexyl-3-methylimidazolium Tetrafluoroborate} \\ [C_6 mim] [BF_4] \end{array}$

1-Dodecyl-3-methylimidazolium Tetrafluoroborate [C₁₂mim][BF₄]

F-B-F

1-octyl-3-methylimidazolium Tetrafluoroborate [C₈mim][BF₄]

Scheme S3. Structure of [C₆mim][BF₄] and Hydrogen Atoms Numbered. Table S32. Calculated ¹H NMR Chemical Shifts of [C₆mim][BF₄]

1 401		iiculatea	Comm					
Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	23.618	23.611	8.550	8.543	9.632	8.670	0.127	0.962
H3	26.186	26.134	7.350	7.298	7.064	7.420	0.122	0.356
H4	26.173	26.146	7.410	7.383	7.077	7.470	0.087	0.393
H1	29.318	29.297	4.140	4.119	3.932	4.040	0.079	0.108
Н5	29.188	29.007	3.840	3.660	4.062	4.180	0.520	0.118
H6	31.877	31.979	1.410	1.512	1.373	1.840	0.328	0.467
H7	32.200	31.979	1.410	1.189	1.050	1.840	0.651	0.790
H8	32.290	31.979	1.410	1.098	0.959	1.840	0.742	0.881
Н9	32.202	31.979	1.410	1.187	1.048	1.840	0.653	0.792
H10	32.462	31.979	1.410	0.927	0.788	0.850	0.077	0.062
referen	reference compound: [C ₄ mim][BF ₄]					opm	0.428	0.590
level o	level of theory: HF/6-311++g(d,p)					opm	0.339	0.493

Scheme S4. Structure of [C₈mim][BF₄] and Hydrogen Atoms Numbered. Table S33. Calculated ¹H NMR Chemical Shifts of [C₈mim][BF₄]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({\rm RRS})$	$\delta_{\rm cal}({\rm TMS})$	δ_{exp}	AE (RRS)	AE (TMS)
H2	23.621	23.611	8.770	8.760	9.629	8.430	0.330	1.199
H3	26.191	26.173	7.630	7.612	7.059	7.280	0.332	0.221
H4	26.183	26.161	7.690	7.668	7.067	7.280	0.388	0.213
H1	29.320	29.315	4.040	4.035	3.930	3.880	0.155	0.050
Н5	29.193	29.180	4.320	4.307	4.057	4.090	0.217	0.033
H6	31.887	31.880	1.930	1.924	1.363	1.850	0.074	0.487
H7	32.207	32.112	1.380	1.285	1.043	1.280	0.005	0.237
H8	32.294	32.112	1.380	1.198	0.956	1.280	0.082	0.324
Н9	32.278	32.112	1.380	1.214	0.971	1.280	0.066	0.309
H10	32.346	32.112	1.380	1.146	0.903	1.280	0.134	0.377
H11	32.268	32.112	1.380	1.224	0.982	1.280	0.056	0.298
H12	32.502	32.381	0.940	0.820	0.748	0.840	0.020	0.092
reference compound: [C ₄ mim][BF ₄]					RMS, p	opm	0.200	0.435
level o	level of theory: HF/6-311++g(d,p)					opm	0.155	0.320

Scheme S5. Structure of [C₁₂mim][BF₄] and Hydrogen Atoms Numbered. Table S34. Calculated ¹H NMR Chemical Shifts of [C₁₂mim][BF₄]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	δ_{exp}	AE (RRS)	AE (TMS)
H2	23.628	23.611	8.770	8.753	9.622	9.090	0.337	0.532
Н3	26.196	26.173	7.630	7.607	7.054	7.680	0.073	0.626
H4	26.190	26.161	7.690	7.662	7.060	7.750	0.088	0.690
H1	29.323	29.315	4.040	4.032	3.927	3.840	0.192	0.087
Н5	29.199	29.180	4.320	4.301	4.051	4.150	0.150	0.099
H6	31.894	31.880	1.930	1.917	1.356	1.850	0.067	0.494
H7	32.226	32.112	1.380	1.266	1.024	1.310	0.044	0.286
H8	32.315	32.112	1.380	1.177	0.935	1.310	0.133	0.375
H9	32.289	32.112	1.380	1.203	0.961	1.310	0.107	0.349
H10	32.368	32.112	1.380	1.124	0.882	1.250	0.126	0.368
H11	32.352	32.112	1.380	1.140	0.898	1.250	0.110	0.352
H12	32.387	32.112	1.380	1.105	0.863	1.250	0.145	0.387
H13	32.384	32.112	1.380	1.108	0.866	1.250	0.142	0.384
H14	32.384	32.112	1.380	1.109	0.866	1.250	0.141	0.384
H15	32.313	32.112	1.380	1.179	0.937	1.250	0.071	0.313
H16	32.532	32.381	0.940	0.790	0.718	0.840	0.050	0.122
referen	reference compound: [C ₄ mim][BF ₄]					opm	0.141	0.401
level o	level of theory: HF/6-311++g(d,p)					opm	0.124	0.365

--Details of generalizing reference standard

A generalised standard might be proposed when the ILs have the weakly coordinating anions. if the IL $[C_2mim][BF_4]$ were used as a reference standard, the proton NMR chemical shifts of ILs with weakly interacting anions could be well predicted. For example, the RMSs of $[C_4mim][PF_6]$ and $[C_2mim][PF_6]$ are 0.242 and 0.284, respectively.

Moreover, an order that representing the intensity of anion interactions might also be obtained by means of RMS analysis. That is, larger RMS usually indicates stronger interaction between the cation and the anion. According to the RMS results, the intensity order of the anion interaction is: $[C_4mim][PF_6]$ (RMS is 0.242) \approx $[C_2mim][PF_6]$ (0.284) < $[C_4mim][NTf_2]$ (0.374)< $[C_4mim][Ots]$ (0.477) \approx $[C_4mim][MeSO_4]$ (0.495) < $[C_4mim][TFA]$ (1.064) < $[C_4mim][OAc]$ (1.272).

Table S35. Ca	Iculated ¹ H NMI	R Chemical Shifts	of [C ₂ mim][PF ₆]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	22.010	22.864	8.550	9.403	9.544	8.820	0.583	0.724
H3	23.860	23.862	7.350	7.351	7.694	7.290	0.061	0.404
H4	23.655	23.937	7.410	7.691	7.899	7.240	0.451	0.659
H1	27.665	27.520	4.140	3.995	3.889	4.260	0.265	0.371
H5	27.378	27.574	3.840	4.036	4.176	3.970	0.066	0.206
H6	29.844	27.574	3.840	1.569	1.710	1.590	0.021	0.120
H7	29.844	27.574	3.840	1.569	1.710	1.590	0.021	0.120
H8	29.844	29.869	1.410	1.435	1.710	1.590	0.155	0.120
reference compound: [C ₂ mim][BF ₄]					RMS, p	opm	0.284	0.410
level o	level of theory: m06-2x/aug-cc-pvdz					opm	0.203	0.340

Table S36. Calculated ¹H NMR Chemical Shifts of [C₄mim][PF₆]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	δ_{cal} (TMS)	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	22.952	22.864	8.550	8.462	8.603	8.520	0.058	0.083
Н3	23.677	23.862	7.350	7.535	7.878	7.490	0.045	0.388
H4	23.737	23.937	7.410	7.610	7.817	7.520	0.090	0.297
H1	27.432	27.520	4.140	4.229	4.123	4.250	0.021	0.127
Н5	27.193	27.574	3.840	4.221	4.362	3.970	0.251	0.392
H6	29.604	27.574	3.840	1.810	1.950	1.930	0.120	0.020
H7	30.634	27.574	3.840	0.779	0.920	1.380	0.601	0.460
H8	30.463	29.869	1.410	0.816	1.091	0.940	0.124	0.151
reference compound: [C ₂ mim][BF ₄]					RMS, p	opm	0.242	0.285
level of theory: m06-2x/aug-cc-pvdz					MAE, p	opm	0.164	0.240

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	23.735	22.864	8.550	7.679	7.887	8.530	0.851	0.643
H3	24.339	23.862	7.350	6.873	7.284	7.660	0.787	0.376
H4	24.088	23.937	7.410	7.258	7.534	7.290	0.032	0.244
H1	28.291	27.520	4.140	3.369	3.331	4.020	0.651	0.689
H5	27.714	27.574	3.840	3.700	3.909	3.780	0.080	0.128
H6	29.546	27.574	3.840	1.867	2.076	1.710	0.157	0.366
H7	30.058	27.574	3.840	1.356	1.564	1.220	0.136	0.344
H8	30.463	29.869	1.410	0.816	1.159	0.870	0.054	0.289
reference compound: [C ₂ mim][BF ₄]					RMS, p	opm	0.477	0.424
level o	level of theory: m06-2x/aug-cc-pvdz					opm	0.343	0.385

Table S37. Calculated ¹H NMR Chemical Shifts of [C₄mim][OTS]

Table S38. Calculated ¹H NMR Chemical Shifts of [C₄mim][Tf₂N]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	21.832	22.864	8.550	9.581	9.790	8.630	0.951	1.160
H3	23.815	23.862	7.350	7.396	7.807	7.540	0.144	0.267
H4	23.675	23.937	7.410	7.672	7.947	7.460	0.212	0.487
H1	27.452	27.520	4.140	4.208	4.170	4.240	0.032	0.070
H5	27.533	27.574	3.840	3.880	4.089	3.960	0.080	0.129
H6	29.711	27.574	3.840	1.702	1.911	1.920	0.218	0.009
H7	30.306	27.574	3.840	1.108	1.317	1.400	0.292	0.084
H8	30.220	29.869	1.410	1.059	1.402	0.970	0.089	0.432
reference compound: [C ₂ mim][BF ₄]					RMS, p	pm	0.374	0.483
level o	level of theory: m06-2x/aug-cc-pvdz					pm	0.252	0.330

Table S39. Calculated ¹H NMR Chemical Shifts of [C₄mim][OAC]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	17.735	22.864	8.550	13.679	13.819	10.18	3.499	3.639
H3	23.816	23.862	7.350	7.396	7.738	7.880	0.484	0.142
H4	23.709	23.937	7.410	7.638	7.845	7.960	0.322	0.115
H1	27.298	27.520	4.140	4.362	4.256	4.200	0.162	0.056
H5	26.954	27.574	3.840	4.460	4.601	3.890	0.570	0.711
H6	29.882	27.574	3.840	1.532	1.672	1.600	0.068	0.072
H7	30.178	27.574	3.840	1.236	1.376	1.210	0.026	0.166
H8	30.422	29.869	1.410	0.857	1.132	0.840	0.017	0.292
reference compound: [C ₂ mim][BF ₄]					RMS, p	opm	1.272	1.318
level c	level of theory: m06-2x/aug-cc-pvdz					opm	0.644	0.649

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
H2	19.041	22.050	8.550	11.558	12.513	8.670	2.888	3.843
H3	24.257	24.210	7.350	7.303	7.297	7.430	0.128	0.133
H4	24.154	24.132	7.410	7.389	7.401	7.390	0.001	0.011
H1	27.841	27.727	4.140	4.026	3.713	4.140	0.114	0.427
H5	27.554	26.761	3.840	3.047	4.000	3.850	0.803	0.150
H6	29.850	30.177	1.410	1.736	1.704	1.790	0.054	0.086
H7	30.164	30.177	1.410	1.423	1.390	1.260	0.163	0.130
H8	30.596	30.177	1.410	0.991	0.959	0.860	0.131	0.099
reference compound: [C ₂ mim][BF ₄]					RMS, p	opm	1.064	1.370
level o	level of theory: m06-2x/aug-cc-pvdz					opm	0.535	0.610

Table S40. Calculated ¹H NMR Chemical Shifts of [C₄mim][TFA]

Table S41. Calculated ¹H NMR Chemical Shifts of [C₄mim][MeSO₄]

Н	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	δ_{exp}	AE (RRS)	AE (TMS)
H2	20.987	22.864	8.550	10.426	10.512	9.418	1.008	1.094
H3	23.831	23.862	7.350	7.381	7.668	7.630	0.250	0.038
H4	23.681	23.937	7.410	7.666	7.818	7.580	0.086	0.238
H1	27.482	27.520	4.140	4.178	4.016	4.260	0.082	0.244
H5	27.232	27.574	3.840	4.182	4.267	3.370	0.812	0.897
H6	29.986	27.574	3.840	1.427	1.512	1.881	0.454	0.369
H7	30.113	27.574	3.840	1.301	1.386	1.352	0.052	0.034
H8	30.410	29.869	1.410	0.869	1.089	0.935	0.066	0.154
reference compound: [C ₂ mim][BF ₄]					RMS, p	pm	0.4956	0.5337
level o	level of theory: m06-2x/aug-cc-pvdz					opm	0.3511	0.3833

--Details on Case Study

In the first stage of this case study, the structure of $[NH_2-Emim][BF_4]-SO_2$ and $[NH_2-Emim][BF_4]$ were optimized at the level of theory m062x/aug-cc-pvdz. Vibrational analysis (frequency calculation) was followed after geometry optimization. The absence of negative or imaginary frequencies indicated that the structures were at a global minimum. In order to investigate the reaction between SO₂ and $[NH_2-Emim][BF_4]$, SO₂ molecule was used to attack the different position of $[NH_2-Emim][BF_4]$ and thus optimized the possible geometric configurations (Figure S26-S27).

Figure S26. SO₂ molecule absorb the H of $-NH_2-$ in $[NH_2-Emim][BF_4]$ (configuration 1)

First, the oxygen atom on SO₂ molecule was supposed to absorb the H of $-NH_2$ - in $[NH_2-Emim][BF_4]$, as shown in Figure S26. Meanwhile, the ¹H NMR chemical shifts was calculated according to this optimized structure (Table S42).

(Configuration 1)								
H position	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}$ (TMS)	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
N-CH-N	22.749	23.204	9.12	9.57	8.87	9.19	0.385	0.317
H in ring	23.765	23.844	7.45	7.53	7.86	7.45	0.079	0.407
H in ring	23.050	23.858	7.200	8.01	8.57	8.100	0.093	0.472
ring-CH ₃	27.206	27.434	3.72	3.95	4.42	3.72	0.228	0.696
ring-CH ₂ -	27.500	27.389	3.41	3.30	4.12	3.41	0.110	0.713
-CH2-	28.473	28.570	2.77	2.87	3.15	2.35	0.517	0.800
-NH ₂	29.264	30.849	2.07	3.65	2.36	3.35	0.305	0.992
$-NH_2$	30.780	30.160	2.07	1.45	0.84	1.45	0.000	0.608
Reference Compound: [NH ₂ -Emim][BF ₄]						RMS	0.271	0.563
level of theory: m062x-aug-cc- pvdz						MAE	0.215	0.527

Table S42. Calculated ¹H NMR Chemical Shifts of [NH₂-Emim][BF₄]–SO₂ (Configuration 1)

Second, SO_2 molecule was supposed to absorb the H of $-CH_3$ in $[NH_2-Emim][BF_4]$. The optimized configuration of this proposed reaction was illustrated in Figure S27, and the data of proton chemical shifts was collected in Table S43.

Figure S27. Configuration 2 of [NH₂-Emim][BF₄]

Table S43. Calculated ¹H NMR Chemical Shifts of [NH₂-Emim][BF₄]–SO₂ (Configuration 2)

H position	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
N-CH-N	23.034	23.204	9.12	9.29	8.59	9.19	0.099	0.602
H in ring	23.535	23.844	7.45	7.76	8.09	7.45	0.309	0.637
H in ring	23.981	23.858	7.20	7.08	7.64	8.10	1.024	0.459
ring-CH ₃	27.619	27.434	3.72	3.53	4.00	3.72	0.185	0.283
ring-CH ₂ -	27.478	27.389	3.41	3.32	4.14	3.41	0.089	0.735
-CH2-	28.428	28.570	2.77	2.91	3.19	2.35	0.562	0.845
$-NH_2$	30.371	30.849	2.07	2.55	3.19	3.35	0.802	0.155
$-NH_2$	30.761	30.160	2.07	1.47	0.86	1.45	0.019	0.589
Reference Compound: [NH ₂ -Emim][BF ₄]						RMS	0.519	0.579
level of theory: m062x-aug-cc-pvdz						MAE	0.386	0.538

Another configuration was also proposed, in which the sulfur atom of SO_2 molecule was attracted by the nitrogen atom of NH_2 -. The data and the configuration were listed in Table S44 and Figure S28, respectively.

Figure S28. Configuration 3 of [NH₂-Emim][BF₄]

Table S44. Calculated ¹H NMR Chemical Shifts of [NH₂-Emim][BF₄]–SO₂ (Configuration 3)

H position	$\sigma_{ m cal}$	$\sigma_{ m ref}$	$\delta_{ m ref}$	$\delta_{\rm cal}({ m RRS})$	$\delta_{\rm cal}({\rm TMS})$	$\delta_{ m exp}$	AE (RRS)	AE (TMS)
N-CH-N	22.361	23.204	9.12	9.96	9.26	9.19	0.773	0.072
H in ring	23.665	23.844	7.45	7.63	7.96	7.45	0.179	0.508
H in ring	23.650	23.858	7.20	7.41	7.97	8.10	0.693	0.128
ring-CH ₃	27.257	27.434	3.72	3.90	4.37	3.72	0.177	0.645
ring-CH ₂ -	27.025	27.389	3.41	3.77	4.60	3.41	0.364	1.187
-CH2-	28.582	28.570	2.77	2.76	3.04	2.35	0.408	0.690
$-NH_2$	25.654	30.849	2.07	7.26	3.04	3.35	3.915	0.310
$-NH_2$	30.010	30.160	2.07	2.22	1.61	1.45	0.771	0.163
Reference Compound: [NH ₂ -Emim][BF ₄]						RMS	1.473	0.581
level of theory: m062x-aug-cc-pvdz						MAE	0.910	0.463

However, only the first configuration of $[NH_2-Emim][BF_4]-SO_2$ and its ¹H NMR chemical shifts are most consistent with the experimental values. The predicted spectral data reveal that the proton chemical shifts of $-NH_2$ group were significantly changed after the SO₂ absorption: from 2.07 to 1.45 and to 3.35 ppm, respectively. Meanwhile, the chemical shift of H (unsaturated C–H in the imidazole ring, with N–CH₂–CH₂–NH₂ connected to the right) moved downfield from 7.20 to 8.10 ppm due to the impact of $[BF_4]$ - anion. Particularly, the study shows that the $[BF_4]$ - anion of $[NH_2-Emim][BF_4]$ -SO₂ was not combined with the H of NH₂, which only moved to the center of imidazolium ring and over the imidazolium plane, as Figure S26 shown.