Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary Material for NiO/Ni_xCo_{3-x}O₄ porous ultrathin nanosheet/nanowire composite structures as high-performance supercapacitor electrodes

Dongkai Jiang^a, Maojun Zheng^{a,b,*}, Yuxiu You^a, Liguo Ma^a, Pengjie Liu^a, Fanggang Li^a, Hao

Yuan^a, Zhihao Zhai^a, Li Ma^c and Wenzhong Shen^a

a Key Laboratory of Artificial Structure and Quantum Control, Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.

b Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, PR China.

c School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.

*Corresponding author Fax: +86-021-54741040, E-mail: mjzheng@sjtu.edu.cn (M. Zheng)

Fig.S1 a Raman spectra of the NiO/Ni_xCo_{3-x}O₄ nanosheet/nanowire composite annealed at 300 °C **b** Raman spectra of the NiO/Ni_xCo_{3-x}O₄ nanosheet/nanowire composite annealed at 250 °C and 350 °C

1	
Annealing temperature (°C)	Mass percentages of Cobalt (%)
250	0.202
300	0.268
350	0.387

Table S1	The	Cobalt	content o	f the	samp	les
----------	-----	--------	-----------	-------	------	-----

Fig.S2 FFT pattern corresponding to the HRTEM image of the NiO/Ni_xCo_{3-x}O₄ porous nanosheets

Line Number	Calculated Spacing	Lattice Plane
1	2.639 Å	(220) 2.882 Å
2	2.213 Å	(222) 2.350 Å

Table S2 The lattice spacing calculated from FFT pattern(nanosheet)

Fig.S3 FFT pattern corresponding to the HRTEM image of the NiO/Ni_xCo_{3-x}O₄ porous nanowires

Line Number	Calculated Spacing	Lattice Plane
1	2.577 Å	(220) 2.882 Å
2	2.238 Å	(222) 2.350 Å
3	2.548 Å	(220) 2.882 Å
4	2.246 Å	(222) 2.350 Å
5	2.585 Å	(220) 2.882 Å

Table S3 The lattice spacing calculated from FFT pattern(nanowire)

For cubic crystals, we have

$$\cos \Phi = \frac{h_1 h_2 + k_1 k_2 + l_1 l_2}{\sqrt{h_1^2 + k_1^2 + l_1^2} \sqrt{h_2^2 + k_2^2 + l_2^2}}$$
(S1)

where Φ is the angle between two crystal faces (h_1, k_1, l_1) and (h_2, k_2, l_2) . Therefore, the angle between two crystal faces (220) and (222) is equal to

35.26° which is fit well with the measured value 35.3°.