Supplementary Information

Tracking intramolecular energy redistribution dynamics in aryl halides: The effect of halide mass

Xiaosong Liu,^{a,} Yunfei Song,^{b†,} Wei Zhang,^a Gangbei Zhu,^b Zhe Lv,^a Weilong Liu,^a and Yanqiang Yang^{a,b,*}

^a Department of Physics, Harbin Institute of Technology, Harbin, China

^b National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China

Molecule Peak Fi		Frequencies of coupling modes /cm ⁻¹	Beat frequency/cm ⁻¹
	Q1	3072 and 2373	701
F-Ph	Q_2	3084 and 2373	711
	Q_3	3072 and 2525	547
	Q_4	3084 and 2525	559
	Q_1	3052 and 2257	795
	Q_2	3067 and 2257	810
Cl-Ph	Q3	3052 and 2511	541
	Q_4	3067 and 2511	556
	Q5	2257 and 2511	254
	Q_1	3056 and 2229	827
	Q_2	3065 and 2229	836
Br-Ph	$\overline{Q_3}$	3056 and 2509	547
	Q_4	3065 and 2509	556
	Q ₅	2229 and 2509	280
	Q_1	3048 and 2216	832
	$\tilde{Q_2}$	3070 and 2216	854
I-Ph	$\tilde{Q_3}$	3048 and 2504	544
	$\widetilde{Q_4}$	3070 and 2504	566
	Q_5	2216 and 2504	288

Table 1. Frequency differences between high frequency C-H stretching modes and combination bands of aryl halides. Vibrational energy flow from red-coded parent modes to blue-coded daughter modes and beat frequencies between parent modes and daughter modes are signed

Molecule	peak	Frequencies of coupling modes /cm ⁻¹	Beat frequency/cm ⁻¹
F-Ph	Q_1	1457 and 1603	146
	Q_2	1496 and 1596	100
	Q ₃	1496 and 1603	107
	Q_1	1443 and 1583	140
Cl-Ph	Q_2	1479 and 1583	104
	Q ₃	1443 and 1479	36
	Q_1	1577 and 1263	314
	Q_2	1319 and 1577	258
D., Dl.	$\overline{Q_3}$	1441 and 1263	178
Br-Pn	Q_4	1441 and 1577	136
	Q_5	1472 and 1577	105
	Q_6	1441 and 1472	31
I-Ph	Q_1	1469 and 1255	214
	Q_2	1436 and 1255	181
	Q_3	1436 and 1441	130
	Q_4	1318 and 1436	118
	Q5	1469 and 1571	102
	Q ₆	1436 and 1469	33

Table 2. Frequency differences between the C-C stretching modes and in-plane C-H deformations of aryl halides. Vibrational energy flow from red-coded parent modes to blue-coded daughter modes and beat frequencies between parent modes and daughter modes are signed

Molecule	Peak	Frequencies of coupling modes /cm ⁻¹	Beat frequency/cm ⁻¹
	Q_1	1010 and 1155	144
	Q_2	1010 and 1218	203
E Dh	Q_3	1024 and 1218	194
F-Pfi	Q_4	1457 and 1596	142
	Q5	1496 and 1596	101
	Q_6	1496 and 1603	107
	Q_1	1068 and 1443	374
	Q2	1002 and 1322	326
	Q3	965 and 1174	217
	Q_4	987 and 1157	177
Cl-Ph	Q5	1002 and 1157	148
	Q_6	1002 and 1083	77
	Q_7	1024 and 1068	40
	Q_8	1479 and 1583	96
	Q9	1443 and 1479	33
	Q_1	1158 and 990	168
	Q ₂	1020 and 1158	143
	Q3	1071 and 963	100
	Q_4	1001 and 1068	69
Br Dh	Q5	1020 and 1001	27
DI-FII	Q_6	1176 and 1441	270
	Q ₇	1263 and 1441	74
	Q_8	1319 and 1577	147
	Q9	1263 and 1319	59
	Q ₁₀	1441 and 1472	31
	Q_1	1156 and 1571	406
	Q_2	1068 and 1436	368
	Q3	1156 and 1469	315
	Q_4	1156 and 1436	283
	Q5	1175 and 1436	252
I-Ph	Q_6	1156 and 1318	172
	Q_7	999 and 1156	159
	Q_8	1175 and 1318	140
	Q9	1318 and 1436	117
	Q ₁₀	1175 and 1255	83
	Q ₁₁	1017 and 1060	36

Table 3. Frequency differences between vibrational modes from 900 to 1600cm⁻¹ of aryl halides. Vibrational energy flow from red-coded parent modes to blue-coded daughter modes and beat frequencies between parent modes and daughter modes are signed

Molecule	Peak	Frequencies of coupling modes /cm ⁻¹	Beat frequency/cm ⁻¹
	Q_1	1218 and 900	318
	Q_2	1155 and 900	255
	Q_3	982 and 759	223
	Q_4	1010 and 831	179
E DL	Q_5	1010 and 1155	145
F-Ph	Q_6	955 and 807	148
	Q_7	1010 and 900	110
	Q_8	807and 900	93
	Q_9	759 and 807	48
	Q ₁₀	1010 and 1068	58
	Q_1	1024 and 741	283
	Q2	1068 and 832	236
	Q3	682 and 902	220
Cl-Ph	Q_4	1002 and 902	100
	Q5	702 and 832	132
	Q_6	1002 and 1083	81
	Q7	1024 and 1068	44
	Q_1	1020 and 673	347
	Q2	1001 and 673	328
	Q3	681 and 906	225
Dr Dh	Q_4	737 and 906	169
DI-PII	Q5	990and 906	84
	Q_6	1020 and 1068	48
	Q7	1020 and 1071	51
	Q_8	1158 and 1176	18
	Q_1	1255 and 904	321
	Q_2	1175 and 904	271
	Q3	1068 and 1255	187
	Q_4	988 and 1156	168
I Dh	Q5	654 and 838	184
1-1 11	Q_6	1017 and 1156	139
	Q7	1060 and 1175	115
	Q_8	1175 and 1255	80
	Q9	999 and 1060	61
	Q ₁₀	684 and 731	47

Table 4. Frequency differences between vibrational modes from 650 to 1200cm⁻¹ of aryl halides. Vibrational energy flow from red-coded parent modes to blue-coded daughter modes and beat frequencies between parent modes and daughter modes are signed

Table 5. Vibrational symmetry type and vibrational structure of fluorobenzene(F-Ph), the nonharmonic vibrational frequencies of those normal modes are computed by density functional theory (DFT) with a Becke-Lee-Yang-Parr function (B3LYP) and the 6-311G basis set, as implemented in the Gaussian 03 computational package. Frequency units are cm⁻¹

B ₂ , 183	B ₁ , 292	A ₁ , ϕ_{CC} ,405	A ₂ , 407	B ₂ , 471	B ₁ , α _{CCC} ,614
B ₂ , ϕ_{CC} ,690	$A_1, v_{CCl}^2,694$	B ₂ , γ _{CH} ,741	Α ₂ , γ _{CH} ,823	B ₂ , γ _{CH} ,901	A ₂ , γ _{CH} ,961
B ₂ , γ _{CH} ,983	A ₁ , <i>v</i> _{CCH} ,994	$A_1, \delta_{CCH}, 1020$	B ₁ , β_{CH} , 1073	$A_1, v_{CCl}^1, 1074$	B ₁ , β_{CH} , 1157
A ₁ , β_{CH} , 1172	B ₁ , β_{CH} , 1291	B ₁ , <i>v</i> _{CC} ,1314	$B_1, v_{CC}, 1446$	$A_1, v_{CC}, 1471$	$A_1, v_{CC}, 1588$
B ₁ , <i>v</i> _{CC} ,1591	A ₁ , <i>v</i> _{CH} ,3107	B ₁ , <i>v</i> _{CH} ,3114	A ₁ , <i>v</i> _{CH} ,3127	B ₁ , <i>v</i> _{CH} ,3138	A ₁ , <i>v</i> _{CH} ,3140

Table 6. Vibrational symmetry type and vibrational structure of chlorobenzene(Cl-Ph), the nonharmonic vibrational frequencies of those normal modes are computed by density functional theory (DFT) with a Becke-Lee-Yang-Parr function (B3LYP) and the 6-311G basis set, as implemented in the Gaussian 03 computational package. Frequency units are cm⁻¹

B ₂ ,163	B ₁ ,245	A ₁ ,306	A ₂ , $\phi_{\rm CC}$, 405	B ₂ ,457	Β ₁ , α _{CCC} ,614
$A_1, v_{CBr}^2,666$	B ₂ , ϕ_{CC} ,683	B ₂ , γ _{CH} ,732	Α ₂ , γ _{CH} ,825	B ₂ , γ _{CH} ,900	A ₂ , γ _{CH} ,961
B ₂ , γ _{CH} ,983	A ₁ , <i>v</i> _{CCH} ,993	A ₁ ,δ _{CCH} ,1015	$A_1, v_{CBr}^1, 1059$	B ₁ , β_{CH} , 1073	$B_1, \beta_{CH}, 1159$
A ₁ , β_{CH} , 1175	B ₁ , β_{CH} , 1289	$B_1, v_{CC}, 1314$	$B_1, v_{CC}, 1442$	A ₁ , <i>v</i> _{CC} ,1473	A ₁ , <i>v</i> _{CC} ,1582
$B_{1}, v_{CC}, 1590$	$A_1, v_{CH}, 3105$	$B_1, v_{CH}, 3113$	$A_1, v_{CH}, 3126$	B ₁ , <i>v</i> _{CH} ,3137	$A_1, v_{CH}, 3139$

Table 7. Vibrational symmetry type and vibrational structure of bromobenzene(Br-Ph), the nonharmonic vibrational frequencies of those normal modes are computed by density functional theory (DFT) with a Becke-Lee-Yang-Parr function (B3LYP) and the 6-311G basis set, as implemented in the Gaussian 03 computational package. Frequency units are cm⁻¹

B ₂ ,158	B ₁ ,220	A ₁ ,266	A ₂ , ϕ_{CC} , 398	B ₂ ,450	B ₁ , α _{CCC} ,613
$A_1, v_{CI}^2, 654$	$B_{2}, \phi_{CC}, 680$	B ₂ , γ _{CH} ,728	Α ₂ , γ _{CH} ,818	B ₂ , γ _{CH} ,890	Α ₂ , γ _{CH} ,958
B ₂ , γ _{CH} ,978	A ₁ , <i>v</i> _{CCH} ,979	$A_1, \delta_{CCH}, 1011$	$A_1, v_{CI}^1, 1052$	$B_1, \beta_{CH}, 1068$	B ₁ , β_{CH} , 1152
A ₁ , β_{CH} , 1171	B ₁ , β_{CH} , 1255	B ₁ , <i>v</i> _{CC} ,1311	B ₁ , <i>v</i> _{CC} ,1436	$A_1, v_{CC}, 1469$	A ₁ , <i>v</i> _{CC} ,1571
B ₁ , <i>v</i> _{CC} ,1571	A ₁ , <i>v</i> _{CH} ,3090	B ₁ , <i>v</i> _{CH} ,3099	A ₁ , <i>v</i> _{CH} ,3101	B ₁ , <i>v</i> _{CH} ,3128	A ₁ , <i>v</i> _{CH} ,3130

Table 8. Vibrational symmetry type and vibrational structure of iodobenzene (I-Ph), the nonharmonic vibrational frequencies of those normal modes are computed by the Moller-Plesset Perturbation Method (MP2) with the AUG-cc-pVTZ basis set on C, H atoms, and the AUG-cc-pVTZ-pp basis set on I atom, as implemented in the Gaussian 03 computational package. Frequency units are cm⁻¹