Supporting Information

Transesterification of (hetero)aryl esters with phenols by an Earth-abundant metal catalyst

Jianxia Chen, E. Namila, Chaolumen Bai, Menghe Baiyin, Bao Agula, Yong-Sheng

Bao*

sbbys197812@163.com

College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.

Table of Contents

General informa	tion	• • • • • • • • • • • • • • • • • • • •	•••••	S2
Part I. Reaction	optimizations,	trace metal anal	ysis, and pro	eliminary
mechanistic inve	estigation		•••••	
1. Reaction op	otimization			S3
2. Trace	metal	analysis	by	ICP-
MS		S4		
3. GC-MS and	lysis of reaction of	f 1a with 2a and reac	tion of 4r with	2a S5
4. The solid st	ate NMR spectra c	of used K ₂ CO ₃		S8
Part II. Experim	ental and anal	ytics	•••••	S9
1. General pro	ocedure for K ₂ CO ₃ -	-catalyzed transesteri	fication	S9
2. Characteriz	ation data of produ	ıcts		
3.10 Gram-sc	ale synthesis of 3a	a		S15
Part III. ¹ H NM	R and ¹³ C NMF	R Spectra of the H	Products	S16

General information

Unless otherwise stated, reactions were performed in oven-dried reaction tube under air atmosphere. Reaction progress was monitored by thin-layer chromatography (TLC). Thin layer chromatography (TLC) was performed on pre-coated silica gel GF254 plates and visualized by UV fluorescence quenching. Silica gel (particle size 40-60 nm) was used for flash chromatography. ¹H NMR spectras were recorded on a Bruker Avance 600 MHz in CDCl₃ and are reported relative to residual solvent peak at δ 7.26 ppm. ¹³C NMR spectras were recorded on a Bruker Avance 600 MHz spectrometer (126 MHz) in CDCl₃ and are reported relative to residual solvent peak at δ 77.16 ppm. Data for 1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet. Data for ¹³C NMR are reported in terms of chemical shifts (δ ppm). All chemical shifts are reported in ppm using TMS the internal standard. The structures of known compounds were further corroborated by comparing their ¹H NMR data with those of literature. GC-MS analyses were obtained on a Thermo DSQ II gas chromatograph. ICP-MS analysis was conducted at the Agilent 7700ce ICP-MS spectrometer. The TEM images were recorded on a JEOL-2100F transmission electron microscope employing an accelerating voltage of 200 kV. The samples were suspended in ethanol and dried on holey carbon-coated Cu grids. The solid-state NMR experiments were performed on a Bruker Avance III 400 WB spectrometer equipped with a 9.39 T magnet at 297 K. The ¹H-¹³C cross-polarization magic angle spinning (CP/MAS) NMR spectra were recorded using a Bruker 4 mm standard bore MAS probe head with the ZrO₂ rotors spinning at 5.0 kHz rate with a Larmor frequency of 100.62 MHz. The spinning sidebands were suppressed by total sideband suppression (TOSS) technique. The TEM images were recorded on a JEOL-2100F transmission electron microscope employing an accelerating voltage of 200 kV. The samples were suspended in ethanol and dried on holey carbon-coated Cu grids.

 K_2CO_3 was purchased from TCI (sublimed grade, 99.99% trace metals basis) and used directly. Phenol substrates were purchased from TCI and used as received (unless noted).

Part I. Reaction optimizations, trace metal analysis, and preliminary mechanistic investigation

1. Reaction optimization

Procedure for reaction condition optimization: pyridin-2-yl 2-methylbenzoate **1a** and phenol **2a** were used as the model reaction. In a typical reaction, pyridin-2-yl 2-methylbenzoate (21.30 mg, 0.10 mmol), phenol (15.98 mg, 0.17 mmol), catalyst (1.38 mg, 0.01 mmol), and the solvent (2.0 mL) were charged in a 25 mL ovendried reaction tube. Reaction was carried out 60 °C for 48 h in an oil bath under air condition. After being cooled to room temperature, the reaction solution was evaporated in vacuo. The residue was purified by flash column chromatography (silica gel, ethyl acetate/petroleum ether = $1:5 \sim 1:15$ as an eluent) to afford the desired product **3**. All the products were also confirmed by comparing the ¹H NMR and ¹³C NMR data with authentic samples.

Catalyst (10 mol%)					
)'N + HO-		Sovent,	L 0 V	
1a	2:	a			3aa
Entry	Catalyst	Base	T(°C)	Solvent	yield(%) ^b
1	Pd/ γ -Al_2O_3	K_2CO_3	60	1,4-dioxane	99
2	K_2CO_3		60	1,4-dioxane	100
3	K_3PO_4		60	1,4-dioxane	81
4	KOBu ^t		60	1,4-dioxane	79
5	КОН		60	1,4-dioxane	70
6	KOCH ₃		60	1,4-dioxane	92
7	Cs_2CO_3		60	1,4-dioxane	93
8	NaOH		60	1,4-dioxane	NP
9	Na ₂ CO ₃		60	1,4-dioxane	NP
10	NaOC ₂ H ₅		60	1,4-dioxane	NP
11	NaOAc		60	1,4-dioxane	NP
12	Li ₂ CO ₃		60	1,4-dioxane	NP
13	Ca(OH) ₂		60	1,4-dioxane	NP
14	NEt ₃		60	1,4-dioxane	NP
15	NaOH		60	DMSO	48
16	Li ₂ CO ₃		60	DMSO	77
17	Ca(OH) ₂		60	DMSO	NP
18	NEt ₃		60	DMSO	NP
19	KI		120	DMSO	67
20	CsI		120	DMSO	55
21	NaI		120	DMSO	53
22	LiI		120	DMSO	56
23	_		60	1,4-dioxane	NP

 Table S1. Condition optimization of novel transesterification^a

24	K ₂ CO ₃	60	CH ₃ CN	76
25	K_2CO_3	60	toluene	91
26	K_2CO_3	60	PhCl	79
27	K_2CO_3	60	DMF	93
28	K_2CO_3	60	DMSO	94
29	K_2CO_3	60	THF	91
30	K_2CO_3	60	H_2O	78
31	K_2CO_3	20	1,4-dioxane	31
32	K_2CO_3	40	1,4-dioxane	42
33	K_2CO_3	80	1,4-dioxane	92
34	K_2CO_3	60	1,4-dioxane	97 ^d

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.17 mmol), catalyst (10 mol%), solvent (2 mL), 60 °C, 48 h; ^{*b*} Isolated yield; ^{*c*} Catalyst (100 mol%); ^{*d*} **1a** (0.1 mmol), **2a** (0.1 mmol).

The results from Table S1 reveal that there is a high degree of tunability in the reaction conditions for the novel transesterification reaction. All potassium bases, such as KOH, K_3PO_4 , KOCH₃, KOBu^t and Cs₂CO₃ could catalyze the transesterification reaction smoothly (entries 3-7). But reactions in the presence of other bases as potential catalysts, such as NaOH, Na₂CO₃, NaOC₂H₅, NaOAc, Li₂CO₃, Ca(OH)₂, and strongly basic amines TEA, did not proceed (entries 8-14). Aim to confirm if this transformation is solubility controlled, NaOH, Li₂CO₃, Ca(OH)₂ and TEA were chosen for reacting in DMSO (entries 15-18). The experiment results showed that NaOH, and Li₂CO₃ could catalyze the transesterification reaction to give desired product in DMSO, whereas Ca(OH)₂ and TEA could not. Non-basic alkali metal salts, including KI, CsI, NaI and LiI, could catalyze the transesterification reaction reaction smoothly at 120 °C (entries 19-22). The use of other solvents, such as DMF, DMSO, CH₃CN, PhCl, toluene and H₂O, led to the formation of **3aa** in lower yields

(entries 24-30). Both a decrease and increase in the reaction temperature (20 °C, 40 °C

and 80 $^{\circ}$ C) reduced the yield of **3aa** (entries 31-33). When the reactants in a ratio 1:1, the yield of **3aa** represents a slight decline (entry 34).

2. Trace metal analysis by ICP-MS

ICP-MS trace metal analysis. To provide further support against involvement of adventitious trace metal species in the K₂CO₃-catalyzed transesterification of aryl ester with phenol, inductively coupled plasma mass spectrometry (ICP-MS) was performed on samples of K₂CO₃ and a standard reaction mixture that was run under optimized conditions in the glove box. Each sample was added to a 100 mL DigiTUBE digestion tube (SCP Science) followed by addition of 3.0 mL of Plasma Pure chloroazotic acid (SCP Science) and heating to 75°C for 36 hours. After digestion, each sample was diluted using Milli Q water to 100 mL and sample analysis was performed on an Agilent 7700ce ICP-MS spectrometer. The results are given in Table S2. The results

from quantitative analysis revealed that most metal contaminants were present below the instrument's lowest limit of detection (i.e., in 0.1 ppm range or lower). On the other hand, the model reaction was conducted in new glassware, and almost the same result (100% isolated yield) was obtained. These results indicated that this hydroxylation reaction is promoted by K_2CO_3 itself rather than catalyzed by the presence of trace metal impurities.

Table S2: ICP-MS analysis on the contents (ppm) of elements in K_2CO_3 and model reaction solution.

Transition-metal	Pd	Cu	Fe	Ru	Ir	Ni	Ag	Au
K_2CO_3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.13	< 0.1	< 0.1
Model reaction solution	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

3. GC-MS analysis of reaction of 1a with 2a and reaction of 4r with 2a

GC-MS analysis of reaction of 4r with 2a

4. The solid state NMR spectra of used K₂CO₃

Figure S1. The solid state ¹H NMR of used K₂CO₃ catalyst

Part II. Experimental and analytics

1. General procedure for K₂CO₃-catalyzed transesterification

In a typical reaction, Aryl ester (0.10 mmol), phenol (0.17 mmol), catalyst (0.01 mmol or 0.02 mmol), and the solvent 1,4-dioxane (2.0 mL) were charged in a 25 mL ovendried reaction tube. Reaction was carried out 60 °C or 120 °C for 48 h in an oil bath under air condition. After being cooled to room temperature, the reaction solution was evaporated in vacuo. The residue was purified by flash column chromatography (silica gel, ethyl acetate/petroleum ether = $1:5\sim1:15$ as an eluent) to afford the desired product **3**. All the products were also confirmed by comparing the ¹H NMR and ¹³C NMR data with authentic samples.

2. Characterization Data for the Products

phenyl 2-methylbenzoate **3aa**.¹ Yield: 100% (21.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.36 – 7.29 (m, 2H), 7.26 (t, J = 7.4 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 2.67 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.9, 151.0, 141.4, 132.8, 132.0, 131.2, 129.5, 128.6, 126.0, 125.9, 121.9, 22.0.

phenyl benzoate **3ba**.² Yield: 78% (15.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 7.4 Hz, 2H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 165.2, 151.0, 133.6, 130.2, 129.6, 129.5, 128.6, 125.9, 121.8.

phenyl 4-methylbenzoate **3ca**.³ Yield: 79% (16.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.2 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.23 – 7.18 (m, 2H), 2.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.3, 151.1, 144.4, 130.2, 129.5, 129.3, 126.9, 125.8, 121.8, 21.8.

phenyl 3-methylbenzoate **3da**.³ Yield: 85% (18.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.47 (td, *J* = 7.5, 1.4 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.35 – 7.29 (m, 2H), 7.29 – 7.25 (m, 1H), 7.23 – 7.18 (m, 2H), 2.68 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.9, 151.0, 141.4, 132.7, 132.0, 131.2, 129.5, 128.6, 126.0, 125.9, 121.9, 22.0.

phenyl 4-(tert-butyl)benzoate **3ea**.³ Yield: 61% (15.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.17 – 8.07 (m, 2H), 7.56 – 7.50 (m, 2H), 7.45 – 7.38 (m, 2H), 7.28 – 7.25 (m, 1H), 7.23 – 7.18 (m, 2H), 1.37 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 165.2, 157.4, 151.1, 130.1, 129.5, 126.8, 125.8, 125.6, 121.8, 35.2, 31.1.

phenyl 4-butylbenzoate **3fa**.⁴ Yield: 70% (17.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.25 – 8.01 (m, 2H), 7.46 – 7.38 (m, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.23 – 7.19 (m, 2H), 2.70 (t, *J* = 7.2 Hz, 2H), 1.69 – 1.60 (m, 2H), 1.43 – 1.33 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.3, 151.1, 149.4, 130.3, 129.5, 128.7, 127.0, 125.8, 121.8, 35.8, 33.3, 22.3, 13.9.

phenyl 4-methoxybenzoate **3ga**.³ Yield: 79% (17.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.21 – 8.13 (m, 2H), 7.43 (t, *J* = 7.9 Hz, 2H), 7.27 (t, *J* = 5.6 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 163.9, 151.1, 132.3, 129.5, 125.7, 121.9, 121.8, 113.9, 55.5.

phenyl 4-chlorobenzoate **3ha**.³ Yield: 70% (16.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.21 (d, J = 7.9 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 164.4, 150.8, 140.2, 131.6, 129.6, 129.0, 128.1, 126.1, 121.6.

phenyl 3-chlorobenzoate **3ia**.⁵ Yield: 74% (17.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.19 (s, 1H), 8.09 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.29 (t, J = 7.3 Hz, 1H), 7.21 (d, J = 7.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 164.0, 150.7, 134.8, 133.6, 131.4, 130.2, 129.9, 129.6, 128.3, 126.1, 121.6.

phenyl 4-fluorobenzoate **3ja**.³ Yield: 85% (18.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.27 – 8.19 (m, 2H), 7.47 – 7.38 (m, 2H), 7.31 – 7.26 (m, 1H), 7.24 – 7.15 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 167.0, 165.3, 164.2, 150.9, 132.8 (d, *J*=9.3 Hz), 129.5, 126.0, 125.8 (d, *J*=3.0 Hz), 121.7, 115.8 (d, *J*=22.1 Hz).

phenyl 2-iodobenzoate **3ka**.² Yield: 68% (22.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.07 (dd, J = 8.0, 1.0 Hz, 1H), 8.04 (dd, J = 7.8, 1.7 Hz, 1H), 7.48 (td, J = 7.6, 1.1 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.30 – 7.25 (m, 3H), 7.22 (td, J = 7.7, 1.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 150.7, 141.7, 134.3, 133.2, 131.5, 129.6, 128.1, 126.2, 121.6, 94.6.

phenyl 3-iodobenzoate **3la**.⁶ Yield: 89% (28.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (t, J = 1.6 Hz, 1H), 8.22 – 8.13 (m, 1H), 8.00 – 7.94 (m, 1H), 7.49 – 7.40 (m, 2H), 7.33 – 7.25 (m, 2H), 7.23 – 7.17 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.7, 150.7, 142.4, 139.0, 131.5, 130.3, 129.6, 129.3, 126.1, 121.6, 93.9.

phenyl 4-cyanobenzoate **3ma**.⁷ Yield: 28% (6.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.31 (d, J = 8.2 Hz, 2H), 7.81 (d, J = 8.3 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.22 (d, J = 8.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.6, 150.6, 133.4, 132.4, 130.7, 129.7, 126.4, 121.5, 117.9, 117.0.

phenyl 4-nitrobenzoate **3na**.¹ Yield: 95% (23.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.44 – 8.29 (m, 4H), 7.50 – 7.42 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.25 – 7.22 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.4, 150.5, 135.0, 131.3, 129.7, 126.5, 123.8, 121.4, 120.7.

phenyl 3-nitrobenzoate **30a**.¹ Yield: 29% (7.1mg). ¹H NMR (600 MHz, CDCl₃) δ 9.05 (t, J = 1.9 Hz, 1H), 8.56 – 8.52 (m, 1H), 8.50 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 7.74 (t, J = 8.0 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.35 – 7.29 (m, 1H), 7.27 – 7.24 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 163.1, 150.5, 148.4, 135.8, 131.4, 129.9, 129.7, 128.0, 126.4, 125.1, 121.5.

phenyl 2-chloro-4-nitrobenzoate **3pa**.⁸ Yield: 69% (19.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.40 (d, J = 2.2 Hz, 1H), 8.26 – 8.22 (m, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.36 – 7.30 (m, 1H), 7.28 – 7.26 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.7, 150.3, 149.8, 135.5, 135.2, 132.5, 129.7, 126.6, 126.3, 121.6, 121.3.

phenyl 1-naphthoate **3qa**.⁹ Yield: 89% (22.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 9.04 (d, J = 8.6 Hz, 1H), 8.46 (d, J = 7.2 Hz, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.32 – 7.25 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.9, 151.1, 134.4, 134.0, 131.8, 131.3, 129.6, 128.8, 128.2, 126.5, 126.0, 125.9, 125.8, 124.6, 122.0.

$$\sqrt[n]{s}$$

phenyl thiophene-2-carboxylate **3ra**.¹⁰ Yield: 82% (16.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.98 (dd, J = 3.7, 1.2 Hz, 1H), 7.66 (dd, J = 5.0, 1.2 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.31 – 7.25 (m, 1H), 7.24 – 7.20 (m, 2H), 7.18 (dd, J = 5.0, 3.8 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 150.6, 134.7, 133.5, 132.9, 129.5, 128.0, 126.0, 121.7.

phenyl 1*H*-indole-2-carboxylate **3sa**.⁷ Yield: 89% (21.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 9.25 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.49 – 7.40 (m, 3H), 7.40 – 7.32 (m, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.21 – 7.15 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 150.5, 137.4, 129.6, 127.5, 126.4, 126.1, 125.9, 122.8, 121.7, 121.1, 112.1, 110.3.

phenyl cinnamate **3ta**.¹¹ Yield: 36% (8.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 16.0 Hz, 1H), 7.57 (s, 2H), 7.47 – 7.35 (m, 5H), 7.24 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.8 Hz, 2H), 6.63 (d, J = 16.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 165.4, 150.9, 146.6, 134.2, 130.7, 129.5, 129.0, 128.3, 125.8, 121.7, 117.4.

4-methylphenyl 2-methylbenzoate **3ab**.¹² Yield: 100% (22.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (dd, J = 7.7, 1.2 Hz, 1H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.25 – 7.17 (m, 2H), 7.13 – 7.00 (m, 2H), 2.67 (s, 3H), 2.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.1, 148.7, 141.3, 135.5, 132.7, 131.9, 131.2, 130.0, 128.8, 125.9, 121.5, 22.0, 20.9.

4-chlorophenyl 2-methylbenzoate **3ac**.¹³ Yield: 100% (24.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 7.8 Hz, 1H), 7.48 (td, *J* = 7.5, 1.4 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.20 – 7.09 (m, 2H), 2.66 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 149.4, 141.5, 133.0, 132.1, 131.2, 129.6, 128.1, 126.0, 123.3, 22.0.

4-iodophenyl 2-methylbenzoate **3ad**.¹⁴ Yield: 79% (26.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 7.6 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.48 (td, *J* = 7.6, 1.3 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.01 – 6.95 (m, 2H), 2.66 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.4, 150.8, 141.5, 138.6, 133.0, 132.1, 131.2, 128.1, 126.0, 124.1, 89.8, 22.0.

4-acetylphenyl 2-methylbenzoate **3ae**.¹⁵ Yield: 87% (22.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, J = 7.9 Hz, 1H), 8.07 – 8.03 (m, 2H), 7.50 (td, J = 7.5, 1.3 Hz, 1H), 7.36 – 7.30 (m, 4H), 2.68 (s, 3H), 2.62 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.9, 165.1, 154.7, 141.6, 134.7, 133.1,

132.1, 131.3, 130.0, 128.0, 126.0, 122.1, 26.6, 22.0.

4-nitrophenyl 2-methylbenzoate **3af**.¹⁶ Yield: 77% (19.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.39 – 8.30 (m, 2H), 8.21 – 8.12 (m, 1H), 7.53 (td, *J* = 7.6, 1.3 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 2.68 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.6, 155.8, 145.4, 141.9, 133.5, 132.2, 131.3, 127.4, 126.1, 125.3, 122.8, 22.0.

4-methoxyphenyl 2-methylbenzoate **3ag**.¹⁷ Yield: 91% (22.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.17 – 8.06 (m, 1H), 7.46 (td, *J* = 7.5, 1.4 Hz, 1H), 7.31 (t, *J* = 8.1 Hz, 2H), 7.16 – 7.07 (m, 2H), 7.00 – 6.84 (m, 2H), 3.81 (s, 3H), 2.67 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 157.3, 144.4, 141.2, 132.6, 131.9, 131.1, 128.7, 125.9, 122.6, 114.5, 55.6, 21.9.

4-formylphenyl 2-methylbenzoate **3ah**.¹⁵ Yield: 82% (19.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 10.02 (s, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 8.03 – 7.88 (m, 2H), 7.51 (td, *J* = 7.6, 1.1 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.37 – 7.29 (m, 2H), 2.68 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 191.0, 165.0, 155.7, 141.7, 134.0, 133.2, 132.2, 131.3, 131.3, 127.8, 126.1, 122.7, 22.0.

3-methoxyphenyl 2-methylbenzoate **3ai**.¹⁸ Yield: 88% (21.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.18 – 8.11 (m, 1H), 7.47 (td, *J* = 7.5, 1.3 Hz, 1H), 7.36 – 7.27 (m, 3H), 6.85 – 6.78 (m, 2H), 6.76 (t, *J* = 2.3 Hz, 1H), 3.82 (s, 3H), 2.67 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.8, 160.6, 151.9, 141.4, 132.8, 132.0, 131.2, 129.9, 128.6, 125.9, 114.1, 111.8, 107.8, 55.5, 22.0.

2,6-dimethoxyphenyl 2-methylbenzoate **3aj**. Yield: 84% (22.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 7.9 Hz, 1H), 7.44 (td, *J* = 7.5, 1.4 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.16 (t, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 6H), 2.67 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.4, 152.6, 140.9, 132.3, 131.6, 131.4, 129.0, 128.9, 126.2, 125.8, 105.0, 56.2, 21.7; MS (EI) m/z (%) 272.1(M⁺, 0.3), 119.0(100), 91.0(54), 65.0(26), 39.0(11); Anal. Calcd for C₁₆H₁₆O₄: C, 70.58; H, 5.92; Found: C, 70.60; H, 5.88.

2,3-dichlorophenyl 2-methylbenzoate **3ak**. Yield: 100% (28.0 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.24 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.51 (td, *J* = 7.5, 1.4 Hz, 1H), 7.40 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.27 (t, *J* = 8.1 Hz, 1H), 7.19 (dd, *J* = 8.1, 1.5 Hz, 1H), 2.68 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 164.5, 148.6, 141.8, 134.0, 133.2, 132.1, 131.5, 127.8, 127.5, 127.5, 126.7, 126.1, 122.3, 21.9; MS (EI) m/z (%) 280.0(M⁺, 0.2), 118.9(100), 90.9(35), 65.0(12), 38.9(2); Anal. Calcd for C₁₄H₁₀Cl₂O₂: C, 59.81; H, 3.59; Found: C, 59.90; H, 3.56.

naphthalen-1-yl 2-methylbenzoate **3al**.¹⁹ Yield: 93% (24.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (dd, J = 7.8, 1.2 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.89 (dd, J = 7.0, 2.2 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.55 – 7.46 (m, 4H), 7.41 – 7.33 (m, 3H), 2.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.7, 146.9, 141.8, 134.8, 132.9, 132.2, 131.3, 128.3, 128.1, 127.1, 126.5, 126.5, 126.1, 126.0, 125.5, 121.3, 118.3, 22.1.

naphthalen-2-yl 2-methylbenzoate **3am**.²⁰ Yield: 100% (26.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.22 (dd, J = 7.8, 1.1 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 2.2 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.37 – 7.30 (m, 3H), 2.70 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.0, 147.5, 140.4, 132.8, 131.8, 131.0, 130.5, 130.2, 128.4, 127.5, 126.8, 126.6, 125.5, 124.9, 124.7, 120.4, 117.7, 21.0.

quinolin-6-yl 2-methylbenzoate **3an**. Yield: 88% (23.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.92 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.1 Hz, 1H), 8.19 (d, *J* = 9.1 Hz, 1H), 8.17 – 8.12 (m, 1H), 7.69 (d, *J* = 2.5 Hz, 1H), 7.59 (dd, *J* = 9.0, 2.6 Hz, 1H), 7.51 (td, *J* = 7.5, 1.3 Hz, 1H), 7.42 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.37 – 7.32 (m, 2H), 2.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 165.7, 150.2, 148.8, 146.3, 141.6, 135.9, 133.0, 132.1, 131.3, 131.1, 128.6, 128.2, 126.0, 125.1, 121.6, 118.7, 22.0; MS (EI) m/z (%) 263.0(M⁺, 3),118.9(100), 91.0(39), 65.0(17), 39.0(5); Anal. Calcd for C₁₇H₁₃NO₂: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.60; H, 5.00; N, 5.29.

Reference:

[1] Sharma, P.; Rohilla, S.; Jain, N. J. Org. Chem. 2017, 82, 1105-1113.

[2] Dohi, T.; Koseki, D.; Sumida, K.; Okada, K.; Mizuno, S.; Kato, A.; Morimoto, K.; Kita, Y. *Adv. Syn. Cat.* 2017, **359**, 3503-3508.

[3] Tu, Y.; Yuan, L.; Wang, T.; Wang, C.; Ke, J.; Zhao, J. J. Org. Chem. 2017, 82, 4970-4976.

[4] Watson, D. A.; Fan, X.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7096-7101.

[5] Qi, X.; Li, C. L.; Jiang, L. B.; Zhang, W. Q.; Wu, X. F. Catal. Sci. Techno. 2016, 6, 3099-3107.

[6] Prangova, L.; Osternack, K.; Voss, J. J. Chem. Res. (S) 1995, 6, 234.

[7] Bao, Y. S.; Baiyin, M.; Bao, A.; Jia, M.; Bao, Z. J. Org. Chem. 2014, 79, 6715-6719.

[8] Saharia, G. S.; Sharma, H. R. Science and Culture 1979, 45, 139-44.

[9] Khedkar, M. V.; Sasaki, T.; Bhanage, B. M. ACS Catalysis 2013, 3, 287-293.

[10] Okita, T.; Kumazawa, K.; Takise, R.; Muto, K.; Itami, K.; Yamaguchi, J. Chemistry Letters 2017, 46, 218-220.

[11] Wang, G.; Xu, Y.; Zhang, S.; Li, Z.; Li, C. Green Chemistry 2017, 19, 4838-4848.

[12] Fitzjarrald, V. P.; Pongdee, R. Tetrahedron Letters 2007, 48, 3553-3557.

[13] Hayashi, M. Journal fuer Praktische Chemie 1929, 123, 289-312.

[14] CAS Registry Number: 885575-61-1.

[15] Um, I.; Lee, J.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987.

[16] Zhang, D.; Pan, C. Catalysis Communications 2012, 20, 41-45.

[17] Engbersen, J. F. J.; Geurtsen, G.; De Bie, D. A.; Van der Plas, H. C. *Tetrahedron* 1988, **44**, 1795-802.

[18] Shakoor, S. M. A.; Choudhary, S.; Bajaj, K.; Muthyala, M. K.; Kumar, A.; Sakhuja, R. *RSC Advances* 2015, **5**, 82199-82207.

[19] Tang, Y.; Huang, J.; Shen, J.; Tan, C. Chin. Pat. App. 2012, CN 102614165 A 20120801.

[20] CAS Registry Number: 666212-54-0.

3. 10 Gram-scale synthesis of 3aa

In a 10 gram-scale reaction, pyridin-2-yl 2-methylbenzoate **1a** (10 g, 47.0 mmol), phenol **2a** (7.51 g, 79.9 mmol), K₂CO₃ (0.65 g, 4.7 mmol), and the solvent (150 mL) were charged in a 250 mL ovendried round flask. Reaction was carried out 60 °C for 48 h in an oil bath under air condition. After being cooled to room temperature, the reaction solution was evaporated in vacuo. The residue was purified by flash column chromatography (silica gel, ethyl acetate/petroleum ether = $1:5\sim1:15$ as an eluent) to afford the desired product **3aa** (9.85 g, 99% yield).

Part III. ¹H NMR and ¹³C NMR Spectra of the Products

¹H NMR of phenyl 2-methylbenzoate **3aa**

¹³C NMR of phenyl 2-methylbenzoate 3aa

¹³C NMR of phenyl benzoate **3ba**

¹³C NMR of phenyl 4-methylbenzoate **3ca**

¹H NMR of phenyl 3-methylbenzoate 3da

¹³C NMR of phenyl 3-methylbenzoate 3da

¹³C NMR of phenyl 4-(tert-butyl)benzoate 3ea

¹³C NMR of phenyl 4-butylbenzoate **3fa**

¹³C NMR of phenyl 4-methoxybenzoate **3ga**

¹H NMR of phenyl 4-chlorobenzoate **3ha**

¹³C NMR of phenyl 4-chlorobenzoate **3ha**

¹³C NMR of phenyl 3-chlorobenzoate **3ia**

¹³C NMR of phenyl 4-fluorobenzoate **3ja**

¹³C NMR of phenyl 2-iodobenzoate 3ka

¹³C NMR of phenyl 3-iodobenzoate **3la**

¹³C NMR of phenyl 4-cyanobenzoate **3ma**

¹³C NMR of phenyl 4-nitrobenzoate **3na**

¹³C NMR of phenyl 3-nitrobenzoate **30a**

¹³C NMR of phenyl 2-chloro-4-nitrobenzoate **3pa**

¹H NMR of phenyl 1-naphthoate **3qa**

¹³C NMR of phenyl thiophene-2-carboxylate **3ra**

¹³C NMR of phenyl 1H-indole-2-carboxylate 3sa

¹H NMR of phenyl cinnamate **3ta**

¹³C NMR of phenyl cinnamate **3ta**

¹³C NMR of 4-methylphenyl 2-methylbenzoate **3ab**

¹³C NMR of 4-chlorophenyl 2-methylbenzoate **3ac**

¹³C NMR of 4-iodophenyl 2-methylbenzoate **3ad**

¹³C NMR of 4-acetylphenyl 2-methylbenzoate **3ae**

¹H NMR of 4-nitrophenyl 2-methylbenzoate **3af**

¹³C NMR of 4-nitrophenyl 2-methylbenzoate **3af**

¹H NMR of 4-methoxyphenyl 2-methylbenzoate 3ag

¹³C NMR of 4-methoxyphenyl 2-methylbenzoate **3ag**

¹³C NMR of 4-formylphenyl 2-methylbenzoate **3ah**

¹H NMR of 3-methoxyphenyl 2-methylbenzoate 3ai

¹³C NMR of 3-methoxyphenyl 2-methylbenzoate 3ai

¹H NMR of 2,6-dimethoxyphenyl 2-methylbenzoate **3aj**

¹³C NMR of 2,6-dimethoxyphenyl 2-methylbenzoate 3aj

MS(EI) of 2,6-dimethoxyphenyl 2-methylbenzoate 3aj

¹H NMR of 2,3-dichlorophenyl 2-methylbenzoate **3ak**

¹³C NMR of 2,3-dichlorophenyl 2-methylbenzoate **3ak**

MS(EI) of 2,3-dichlorophenyl 2-methylbenzoate 3ak

¹H NMR of naphthalen-1-yl 2-methylbenzoate **3al**

 $^{13}\mathrm{C}$ NMR of naphthalen-1-yl 2-methylbenzoate **3al**

¹H NMR of naphthalen-2-yl 2-methylbenzoate **3am**

¹³C NMR of naphthalen-2-yl 2-methylbenzoate **3am**

¹H NMR of quinolin-6-yl 2-methylbenzoate **3an**

¹³C NMR of quinolin-6-yl 2-methylbenzoate **3an**

MS(EI) of quinolin-6-yl 2-methylbenzoate 3an

Relative