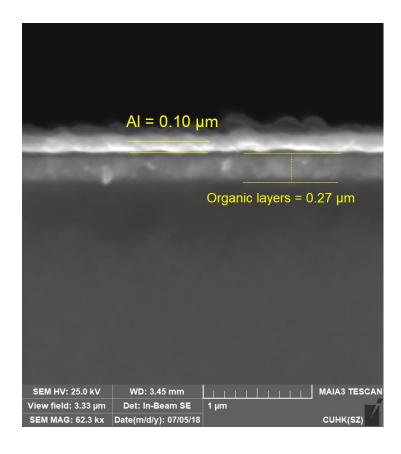

Supplementary Information

A simple method to improve the performance of perovskite lightemitting diodes via layer-by-layer spin-coating CsPbBr₃ quantum dots


Bobo Li, ‡^a Xiaomeng Li, ‡^a Xia Li,^b Haolin Liu,^a Zhaonan Li,^a Guohong Xiang,^a Yuhan Liu,^a Taojie Zhou,^a Xuan Fang^a and Zhaoyu Zhang*^a

- a. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China.
- b. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- ‡ These authors contributed equally to this work.

^{*}Corresponding author: zhangzy@cuhk.edu.cn

Fig. S1 Thickness of perovskite QDs films with different layers (1~5 layers) obtained from AFM measurements.

Fig. S2 SEM cross-sectional-view of perovskite device based on 4 layers of CsPbBr₃ QDs. Organic layers include the multilayers of ITO, PEDOT:PSS, multilayers of perovskite QDs, TPBI and LiF.

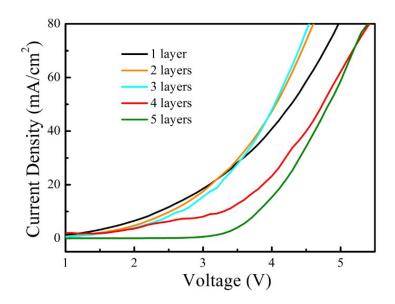


Fig. S3 J-V curves of the devices with different layers of CsPbBr₃ QDs.

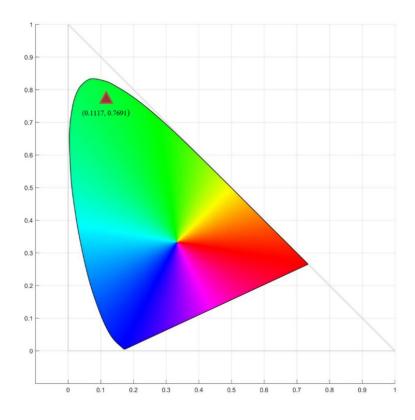


Fig. S4 CIE color coordinates (red triangle) of the green emission spectrum.