Supporting Information

Facile synthesis of high-performance SiO₂@Au core-shell nanoparticles with high SERS activity

Keli Wang,^{a,b,1} Yanping Wang,^{b,1} Chongwen Wang,^{b,c,*} Xiaofei Jia,^b Jia Li,^b Rui Xiao,^{a,b,*} and Shengqi Wang^{a,b,*}

^a Anhui Medical University, Hefei, 230032, PR China.
^b Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
^c College of Life Science, Anhui Agricultural University, Hefei 230036, China.
*Corresponding author. *Email address:* sqwang@bmi.ac.cn (S. Wang), ruixiao203@sina.com (R. Xiao), wangchongwen1987@126.com (C. Wang).

Experimental section

1.1 Materials and chemicals

Chlorauric acid tetrahydrate (HAuCl₄·4H₂O), trisodium citrate dehydrate, and ammonia solution (28%) were purchased from Sinopharm Chemical Reagent Co., Ltd., (China). Tetraethoxysylane (TEOS), polyethyleneimine branched (PEI, MW 25 kDa), 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), MES monohydrate, N-hydroxysuccinimide (NHS), sodium borohydride $(NaBH_4),$ polyvinylpyrrolidone (PVP, MW 40 kDa), Human immunoglobulin M (IgM), goat anti-human IgM, donkey anti-goat immunoglobulin G (IgG), and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (USA). The nitrocellulose (NC) membrane (Hi-flow plus HF135) with 6 µm pore size was obtained from Millipore Corporation (USA). The sample pad, conjugate pad, and absorbent pad were obtained from GE Healthcare (UK). Ultrapure water purified with a Millipore Milli-Q system (18.2 M Ω ·cm⁻¹) was used to prepare the aqueous solutions. All chemicals used in this study were analytical reagent grade.

1.2. Instruments

The morphologies of the SiO₂@Au NPs were characterized by Hitachi H-7650 microscope at an accelerating voltage of 80 kV. The HRTEM imaging of monodisperse SiO₂@Au NPs were charactered by Philips Tecnai G2 F20 microscope at an accelerating voltage of 200 kV. Elemental mapping images were recorded by energy-dispersive X-ray spectroscopy (EDS) using another JEOL JEM-2100 electron microscope equipped with a STEM unit. Scanning electron microscopy

(SEM) images were obtained with a JEOL JSM-7001F microscopy at an accelerating voltage of 5 kV. The XRD patterns of products powder were characterized on investigated on a Japan Rigaku D/max 2550 VB/PC rotation anode X-ray diffractometer. UV-visible spectra of the samples were measured in the range of 200-800 nm using a Shimadzu 2600 spectrometer. Zeta potential of samples were recorded by a dynamic light scattering with Zetasizer Nano ZS (Malvern, UK). All the measurements were performed at room temperature. Raman signals from the test zone of the SERS-based LFA strips were recorded on a Renishaw inVia plus Raman system with an excitation laser at 785 nm. Incident radiation was coupled to an Olympus BX51 optical microscope and focused to a 2 μ m diameter spot through a 50× objective. The data acquisition time at each spot was 5 s, and the peak intensities of the samples were normalized with respect to the silicon wafer at 520 cm⁻¹.

1.3. Synthesis of monodispersed SiO₂ NPs

Monodispersed SiO₂ NPs were prepared according to a modified Stöber method. Typically, 4 mL of ammonia solution and 6 mL of deionized water were added to 100 mL ethanol under magnetic stirring (600 rpm/min). Subsequently, 4 mL of TEOS were added into the above mixture solution, and the reaction was kept at room temperature for 4h. Finally, the resulting SiO₂ NPs were centrifuged and redispersed in 20 mL of ethanol.

1.4. Synthesis of SiO₂@PEI-Au seed NPs

The SiO₂@PEI NPs were synthesized through a PEI self-assembly process under sonication condition. First, 0.5 g PEI was dissolved in 100 mL of deionized water by ultrasonication for 10 min. Next, 0.1 mL of prepared SiO₂ NPs (10 mg/mL) was dispersed in the PEI solution under sonication at room temperature for 30 min, during which PEI gradually self-assembled on the silica cores. The obtained SiO₂@PEI NPs were separated by centrifugation at 7000 rpm for 6 min. After washing three times with deionized water to remove the excess PEI, the PEI-modified SiO₂ particles were mixed with previously prepared small Au NPs (3-5 nm) by sonication for 20 min. The resulting SiO₂@PEI-Au seed NPs were separated and dispersed in 10 mL ethanol.

1.5. Synthesis of high-performance SiO₂@Au NPs

5 mg of SiO₂@PEI-Au seed NPs were dispersed in 100 mL of 0.02 mM HAuCl₄ aqueous solution containing 0.2 wt% PVP and then 1mL of hydroxylammonium chloride (10 mg/mL) was added. The SiO₂@Au core-shell NPs were obtained within 5 min under sonication. Finally, the products were washed twice with deionized water and finally resuspended in ethanol.

1.6. SERS detection of DTNB

A series of DTNB ethanol solutions with concentrations ranging from 10^{-4} M to 10^{-11} M was prepared. About 500 µL of DTNB solution of different concentrations was mixed with 10 µL of SiO₂@Au NPs (1 mg/mL) and incubated under sonication for 1 h. The mixture was separated and

washed three times with ethanol to remove excess DTNB. The precipitate was resuspended in 5 μ L of ethanol. The suspension was dropped on a silicon substrate, air dried, and subjected to recording of SERS spectra.

1.7. Preparation of SiO₂@Au NPs SERS tags

DTNB-labelled SiO₂@Au NPs were prepared by attaching the DTNB molecules on the Au shell. In brief, 100 μ L of DTNB ethanol solution (10 mM) was added to 10 mL of the as-prepared SiO₂@Au NPs. The mixture was vigorously sonicated at room temperature for 1 h. The product was centrifuged at 3000 rpm for 6 min to remove the excess DTNB molecules, and the precipitate was redispersed in 1 mL of MES solution (100 mM, pH 6.0). The carboxyl groups of DTNB on the surface of the SiO₂@Au NPs were reacted with a mixture of 100 μ L of EDC (10 mM) and 10 μ L of NHS (100 mM) for 15 min. The mixture was then added with 5 μ L of goat anti-human IgM (2 mg/mL) and shaken for 2 h (800 rpm, 25 °C). The nonspecific absorption sites on the SiO₂@Au NPs SERS tags were blocked with 100 μ L of BSA (5%, v/v) for 2 h. After separating by centrifugation and washing twice with PBS (10 mM, pH 7.4), the final obtained SERS tags were dispersed in 500 μ L of PBS and stored at 4 °C before use.

1.8. Preparation of SERS-based LFA strips

The LFA strip is composed of five parts: a sample pad, a conjugate pad, an NC membrane, an absorbent pad, and a plastic backing card. Each component was fabricated on a plastic backing card, and both ends of the component were overlapped (around 2.5 mm) in sequence to ensure solution migration. A desired volume of the as-prepared SiO₂@Au SERS tags was added to the conjugate pad, which was then dried in an incubator at 37 °C for 4 h. Donkey anti-goat IgG (1 mg/mL) was sprayed in the control line, and goat anti-human antibody IgM (1 mg/mL) was sprayed in the testing line in the nitrocellulose membrane by the bio-dot spraying-membrane machine at a rate of 1.0 μ L·cm⁻¹ and dried for 2 h at 37 °C. The prepared strips were cut in 3.5 mm width by using a programmable cutter and stored in a sealed falcon tube with desiccant before use.

Fig. S1 SEM images of the fabricated monodisperse SiO₂@Au NPs.

Fig. S2 Zeta potentials of (a) SiO₂, (b) SiO₂@PEI, (c) SiO₂-Au seed, and (d) SiO₂@Au NPs in aqueous solution.

Fig. S3 TEM images of multiple SiO₂-Au seed with different sizes: (a) 70 nm, (b) 150 nm, (c) 300 nm, and their corresponding fabricated SiO₂@Au MNPs (d), (e), and (f) respectively.

Fig. S4 SERS spectra of DTNB (10^{-5} M) adsorbed on SiO₂@Au NPs with different particle sizes.

Fig. S5 Specificity of the SiO₂@Au tags based SERS-LFIA. (a) Photograph of the SERS-LFIA strip after applying human IgM solution (100 ng/mL) as a positive test, other proteins (1000 ng/mL) as a negative test, and PBST buffer as a blank control. (b) Raman spectra at the test lines of SERS-LFIA strip. Error bars are the standard deviation of three independent experiments.