Functionalization of silver nanoparticles with mPEGylated luteolin for selective visual detection of Hg²⁺ in water sample

Weixia Qing^a, Mengnan Zhao^b, Conghui Kou^b, Minghua Lu^c and Yong Wang^{*c}

Fig.S1 Synthetic route of mPEGylated luteolin conjugates and mPEGylated luteolin-AgNPs nanoparticles

Fig.S2 FT-IR spectra of mPEGylated luteolin-AgNPs

Fig.S3 UV-vis absorption spectrum of mPEGylated luteolin-AgNPs nanoparticles at different pH.

Fig. S4 Colorimetric responses of (a) AgNPs with different metal ions and (b) selectivity for Hg^{2+} in presence of equal amounts of other metal ions.

Fig.S5 (a) Average size and (b) zeta potential of mPEGylated luteolin-AgNPs with various concentrations of Hg^{2+} .

Fig.S6 The 1H NMR spectrum of mPEGylated luteolin-AgNPs nanoparticles in D2O in the absence (a) and presence (b) of Hg²⁺.