Support information

Preparation and Application of Magnetic Nanocomposite by Waste Toner for

Cr(VI) Removal

Hong Zhu^a, Yucheng Zhou^a, Shengsen Wang^{a,b}, Xiaoge Wu^a, Jianhua Hou^{a,b}, Weiqin Yin^a, Ke

Feng^{a,b}, Xiaozhi Wang^{a,b,c}*, Jie Yang^d

^a College of Environmental Science and Engineering, Yangzhou University, Jiangsu 225127, China.

^b Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.

^c Institutes of Agricultural Science and Technology Development, Yangzhou University,

Yangzhou 225127, Jiangsu, China.

^d Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210095, China.

*Corresponding author: Tel: +86 514 87979570; Fax: +86 514 87979528;

E-mail address: xzwang@yzu.edu.cn.

Table S1. Surface area, pore size and pore volume of WT(Air), WT(Vac) and WT (NH₃)

Sample	$S_{BET}(m^2g^{-1})$	Pore size(nm)	Pore volume(cm ³ g ⁻¹)
WT(Air)	11.93	23.30	0.069
WT(Vac)	11.75	12.75	0.037
WT(NH ₃)	42.53	9.19	0.098

Table S2 Pseudo-second-order kinetics for Cr(VI) removal by WT(NH₃) and WT(Vac)

sample	$Qe(mg g^{-1})$	Pseudo-second-order		
		$q_e(mg g^{-1})$	$k_2(h^{-1})$	\mathbb{R}^2
WT(NH ₃)-H ₂ SO ₄	12.483	15.38	0.0352	0.9851
WT(NH ₃)-HCl	8.9786	9.901	0.1186	0.9967
WT(Vac)-H ₂ SO ₄	3.5714	3.906	0.1959	0.9705
WT(Vac)-HCl	3.7299	4.202	0.1666	0.9765

Table S3 Adsorption isotherms simulation parameters					
sample	Langmuir				
	$q_e(mg g^{-1})$	$K_L(h^{-1})$	R ²		
WT(NH ₃)-H ₂ SO ₄	25.64	0.039	0.995		
WT(NH ₃)-HCl	35.84	0.027	0.993		

Table S3 Adsorption isotherms simulation parameters

Adsorbents	рН	Time	\mathbf{S}_{BET}	q _{max}	ref
		(min)	$(m^2 g^{-1})$	$(mg g^{-1})$	
Magnetic Biochar	1.0	300	56.2	27.2	1
Magnetic Fe ₃ O ₄ nanoparticles	2.0	30	/	12.43	2
Fe ₃ O ₄ @ SiO ₂ nanoparticles	2.0	100	3.78	3.8	3
N-doped carbon with magnetic particles	3.0	30	1136	16	4
Magnetic carbon particles (MCPs)	1.0	10	32.6	15.89	5
Magnetic carbon fibers (MCFs)	1.0	10	124.7	43.18	5
ZVI @ carbon @ polyaniline nanocomposite	1.0	5	18.52	508	6
Chitosan-coated-magnetite with covalently	3.0	40	58	8.0	7
grafted polystyrene based carbon nanocomposites					
Fluorine and nitrogen co-doped magnetic carbons	1.0	15	82.7	740.7	8
Magnetic waste toner	2.0	420	42.53	35.84	This wor

Table S4 Comparison of Cr(VI) removal capacity of various adsorbents.

Fig. S1 Kinetics of Cr(VI) adsorption by WT(NH₃) and WT(Vac) in H₂SO₄ and HCl system.

Fig. S2 Linear fitting of adsorption isotherms of $WT(NH_3)$ in H_2SO_4 and HCl system.

Fig. S3 Effect of pH value on Zeta Potential by WT(NH₃).

Fig. S4 (a) Concentration of Cr speciation after adsorption by WT(NH₃) in the solution with different acid system. (b) Concentration of ferrous ion in different acid system with no and with Cr(VI).

References:

1.S. Shi, J. Yang, S. Liang, M. Li, Q. Gan, and K. Xiao, Sci. Total Environ, 2018, 628–629, 499-508.

2.S. H. Huang and D. H. Chen, J. Hazard. Mater., 2009, 163,174–179.

3. Srivastava V, Sharma Y C., Water Air Soil Pollut., 2014, 225, 1-16.

4.Y. Li, S. Zhu, Q. Liu, Z. Chen, J. Gu, C. Zhu, T. Lu, D. Zhang and J. Ma, Water Res., 2013, 47, 4188–4197.

5.J. N. Huang, Y. H. Cao, Q. Shao, X. F. Peng, and Z. H. Guo, Ind. Eng. Chem. Res., 2017, 56, 10 689–10701.

6.K. D. Gong, Q. Hu, Y. Y. Xiao, X. Cheng, H. Liu, N. Wang, B. Qiu, and Z. H. Guo, J. Mater. Chem. A, 2018, 6, 11119-11128.

7.H. B. Gu, X. J. Xu, H. Y. Zhang, C. B. Liang, H. Lou, C. Ma, Y. J. Li, Z. H. Guo and J. W. Gu. Eng. Sci., 2018, 1, 46-54.

8.J. N. Huang, Y. H. Li, Y. H. Cao, F. Peng. Y. G. Cao, Q. Shao, H. Liu, H. Liu, and Z. H. Guo, J. Mater. Chem. A, DOI: 10.1039/c8ta02861c.