Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

> Electronic Supplementary Information Phosphorothioate Analogs of Glycol Nucleic Acids

Synthesis and Structural Properties of P-Stereodefined Phosphorothioate Analogs of Glycol Nucleic Acids.

Agnieszka Tomaszewska-Antczak, Anna Maciaszek, Katarzyna Jastrzębska, Barbara Mikołajczyk, Piotr Guga

Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112. 90-363 Łódź, Poland

Table 1S. HRMS data for **5a-d** (unseparated P-diastereomers) and physico-chemical characteristics of *fast* and *slow*-eluting pairs of enantiomers of **5a-d**. A mixture of EtOAc and hexane at given ratio (v/v) was used for TLC and HPLC analyses.

		5a		5b		5c		5d	
		OTP- ^G T		OTP- ^G A ^{Bz}		OTP- ^G C ^{Bz}		OTP- ^G G ^{iBu}	
HRMS ^{c)} (Da)	calc.	707	7.2015	820).2392	796	6.2280	802	2.2498
	found	707	7.2015	820).2400	796	6.2287	802	2.2514
EtOAc : hexane		50 : 50		45 : 55		55 : 45		85 : 15	
fast/slow		f	S	f	S	f	S	f	S
TLC, R _f		0.68	0.60	0.72	0.58	0.70	0.58	0.65	0.50
HPLC ^{a)} , R _t (min)		19.2	21.5	18.0	23.0	27.0	31.2	13.5	17.0
δ ³¹ P NMR ^{b)} (ppn	n)	105.6	106.1	105.8	106.6	105.1	105.7	106.1	106.5

^{a)} A Pursuit XRs column (10μ silica, 100 Å; 250 × 21.2 mm; flow rate 25 mL min⁻¹);
^{b)} In CDCl₃;

In principle, the phosphitylation of eight ^{DMT-G}N's (obtained from 2 enantiomeric glycidols and 4 nucleobases) should provide 16 OTP-^GN's, but because **4d** was obtained only from (*R*)-(+)-glycidol we actually have obtained 14 diastereomerically different OTP-^GN's. However, Table 1S does not contain 14 data sets but only 8 (**5a** *fast/slow* to **5d** *fast/slow*) because each of **5a-c** consists of two pairs of enantiomers (R_PR_C/S_PS_C and S_PR_C/R_PS_C) and within each pair the components cannot be distinguished by the chromatographic and spectroscopic methods applied (no chiral auxiliaries were used). From this perspective **5d** consisted of two diastereomeric R_PS_C and S_PS_C components.

Panel A - isomer fast

Panel B - isomer slow

Figure 1S. ³¹P NMR spectra (CDCl₃) for *fast*- and *slow*-eluting **5a**, panel A and B, respectively; recorded with a Bruker AV-200 spectrometer (200 MHz).

Panel B

9.5

9.0 8.5 8.0

1.000

7.5

0.090

7.0

 $\frac{1.088}{4.096}$

6.5

6.0 5.5

Figure 2S. ¹H NMR spectra (CDCl₃) for *fast*-eluting and *slow*-eluting **5a**, panel A and B, respectively; recorded with a Bruker AV-200 spectrometer (200 MHz).

5.0

1.080

4.5

4.0 3.5

6.008

2.074

3.0

1.058

2.5 2.0 0 1.00

1.0

ppm

1.5

3.076

3.081 7.084

Panel A

Panel B

Figure 3S. ¹³C NMR spectra (CDCl₃) for *fast*-eluting and *slow*-eluting **5a**, panel A and B, respectively; recorded with a Bruker AV-200 spectrometer (200 MHz).

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

332 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-38 H: 0-45 N: 0-3 O: 0-8 P: 0-2 S: 0-2

A. Antczak

180508_ATA_10_neg_2 9 (0.228) AM2 (Ar,40000.0,0.00,0.00); Cm (7:14-38:63)

Panel A

Page 1

1: TOF MS ES-1.09e+005

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

444 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-45 H: 0-47 N: 0-5 O: 0-8 P: 0-2 S: 0-2

A. Antczak

180508_ATA_5_neg 10 (0.265) AM2 (Ar,40000.0,0.00,0.00); Cm (6:18-50:63)

Panel B

Page 1

1: TOF MS ES-4.76e+005

Page 1

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

496 formula(e) evaluated with 6 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-45 H: 0-47 N: 0-5 O: 0-8 S: 0-2 P: 0-2

180508_ATA_1_neg_2 10 (0.265) AM2 (Ar,40000.0,0.00,0.00); Cm (6:16-19:62)

796.2287 100-797.2310 %-798.2299 799.2354 0-4-------- m/z 795.50 796.00 796.50 797.00 797.50 798.00 798.50 799.00 799.50 800.00 Minimum: 80.00 -1.5 Maximum: 100.00 5.0 10.0 50.0 Mass RA Calc. Mass PPM DBE i-FIT Norm Conf(%) Formula mDa 796.2287 100.00 796.2280 0.7 0.9 23.5 17.3 1.033 35.59 C42 H43 N3 O7 S2 P 22.0 796.2276 1.1 1.4 28.5 5.716 0.33 C44 H40 N5 O4 S P2 796.2310 -2.3 -2.9 23.5 16.8 61.58 0.485 C41 H44 N5 O4 S2 P2 796.2264 2.3 2.9 28.5 20.3 4.008 1.82 C44 H38 N5 O6 S2 796.2263 2.4 3.0 23.5 21.6 5.277 0.51 C43 H44 N O8 S P2 796.2246 4.1 5.1 28.5 22.6 6.313 0.18 C45 H39 N3 O7 S P

Panel C

1: TOF MS ES-8.52e+004

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 614 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-45 H: 0-50 N: 0-6 O: 0-8 P: 0-1 S: 0-3

A.Tomaszewska

180518_guaG_OTP 7 (0.194) Cm (5:10-17:30)

Panel D

Figure 4S. HRMS spectra for **5a-d** (panel A, B, C, and D, respectively).

Panel B.

Figure 5S. MALDI-TOF MS spectrum for *fast*- and *slow*-eluting **5a** (panel A and B, respectively). 3hydroxypicolinic acid (50 mg/mL in 50% ACN/H₂O) and ammonium citrate dibasic (50 mg/mL in H₂O) 8:1 (v/v)] used as a matrix.

Figure 6S. MS data for c^GTMPS isolated from the mixture after detritylation of **5a**.

Panel A

Panel B

Figure 7S. ³¹P NMR spectra (no deuterated solvent) for ${}^{DMT-g}C^{Bz}{}_{PS}T_{Ac}$ **10c** obtained from *fast*-**5c** and *slow*-**5c**, panel A and B, respectively. The monomer **5c** was obtained from *R*-(+)-glycidol.

Panel B

Figure 8S. MALDI TOF MS spectra for RP HPLC isolated ${}^{G}C_{PS}T$ **11c** obtained from *fast*-**5c** (panel A) and *slow*-**5c** (panel B). The monomer **5c** was obtained from *R*-(+)-glycidol. Molecular mass (calc. for $C_{17}H_{23}N_5O_9PS$) 504.44, m/z found 504.2 and 504.1.

Electronic Supplementary Information Phosphorothioate Analogs of Glycol Nucleic Acids

Figure 9S. RP HPLC profiles for three samples: 1) ${}^{G}P_{S}T$ **11d** obtained from *fast-***5d** (a black line), hydrolysis of ${}^{G}P_{S}T$ with svPDE (a red line) and hydrolysis ${}^{G}G_{PS}T$ with nP1 (a blue line). An ACE 5 C 18-AR Column, 250×4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH₃CN in 0.1 TEAB, Gradient: 0-50% of B buffer in 20 min, 50-100% of B buffer in 7 min.

Figure 10S. RP HPLC profiles for three samples: 1) ${}^{G}G_{PS}T$ **11d** obtained from *slow-***5d** (a black line), hydrolysis of **11d** with svPDE (a red line) and hydrolysis of **11d** with nP1 (a blue line). An ACE 5 C 18-AR column, 250×4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH₃CN in 0.1 TEAB, Gradient: 0-50% of B buffer in 20 min.

Figure 11S. HPLC profiles recorded for four samples: 1) d($C_{PS}T$), a mixture of both P-diastereomers – a black line; 2) d($C_{PS}T$), a mixture of both P-diastereomers, treated with svPDE – a blue line; 3) ${}^{g}C_{PS}T$ **10c** (derived from *fast*-**5c**) treated with svPDE – a red line; 4) ${}^{g}C_{PS}T$ **10c** (derived from *fast*-**5c**) – a pink line. A Kinetex 5µ C18 column, 250×4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH₃CN in 0.1 TEAB, Gradient: 0-50% of B buffer in 20 min.

Figure 12S. Decay of the trityl cation absorption (after the 10^{th} coupling) during the synthesis of $({}^{G}U_{PS})_{11}dA$ as measured photometrically by the internal monitor in the automated H-6 DNA/RNA synthesizer. From the total yield 94% a repetitive yield 99.2% was calculated (0.992^10).

Electronic Supplementary Information Phosphorothioate Analogs of Glycol Nucleic Acids

Figure 13S. RP HPLC analysis of $({}^{G}U_{PS})_{11}dA$ after treatment with DBU. A Phenomenex Polymer X column, 10um RP-1 100Å, 250x10.0mm; Buffers: A = 0.1 M TEAB, B= 40% CH₃CN in 0.1 MTEAB; flow rate 2.5 ml/min; Gradient program: t (min) %B

· ((1 1 1 1)	/00
0	0
10	50
12	70
14	100
20	100

Figure 14S. MALDI-TOF MS analysis of the fraction collected during RP HPLC analysis of (^GU_{PS})₁₁dA after treatment with DBU (a broad peak eluting at 15.65 min, see Figure 13S).

Figure 15S. Decay of the trityl cation absorption during the manual synthesis of S_P -17 (A^gTG^gCG^gCAT) measured photometrically.

Figure 16S. RP HPLC profile for the detritylated S_P -**17** oligomer. A Kinetex 5 μ C18 column, 250×4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH₃CN in 0.1 TEAB, Gradient: 0-100% of B buffer in 22 min.

Figure 17S. MALDI-TOF MS spectrum for $S_{\rm P}$ -17 oligomer; molecular mass calculated 2395, found 2394.1

Figure 18S: Increase of UV absorption at 260 nm in melting experiments for selfcomplementary oligomers **15-19** (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂).

Figure 19S: Increase of UV absorption at 260 nm in melting experiments for selfcomplementary oligomers **14**, **16** and heteroduplexes **14/16** and **15/17** (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂).

Table 2S. Melting temperatures for mixtures of R_P-PS-(GNA/DNA) **14** or **16**, and S_P-PS-(GNA/DNA) **15** or **17** with **DNA** (d(ATGCGCAT)) or **(m)RNA** ((2'-OMe)-AUGCGCAU) templates. Melting temperatures for homoduplexes **DNA/DNA** and **(m)RNA/(m)RNA** are given as the reference. Temperature gradients of 1°C/min for annealing and 0.5°C/min for melting were applied.

	T _m (°C)							
template	DNA	(m)RNA	5'-(^{<i>G</i>} A T ^{<i>G</i>} G	C ^G G C ^G A T)-3'	5'-(A ^G T G ^G C G ^G C A T)-3'			
			R _P -14	S _P -15	R _P -16	S _P -17		
DNA d(ATGCGCAT)	43	×	41	42	42	41		
(m)RNA (2'-OMe)- AUGCGCAU	×	62	59	60	59	58		

Figure 20S: Increase of UV absorption at 260 nm in melting experiments for selfcomplementary **DNA**, **(m)RNA** and for mixtures **DNA/(m)RNA**, **14/(m)RNA** and **16/(m)RNA** (dissolved in pH 7.2 buffer containing 10 mM Tris-HCI, 100 mM NaCI, and 10 mM MgCl₂).

Figure 21S: CD spectra for the selfcomplementary oligomer (m)RNA and its mixture with 14 or 16 (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂) recorded at room temperature.