Conversion of dilute nitrous oxide (N₂O) in N₂ and N₂-O₂ mixtures by plasma and plasma-catalytic processes

Xing Fan,*a Sijing Kang,a Jian Lia and Tianle Zhub

Figures S1 and S2

Figs. S1 and **S2** show the effects of N₂O presence in N₂-O₂ mixture on the production of NO and NO₂ by discharge in plasma (**Fig. S1**) and plasma-Al₂O₃ reactors (**Fig. S2**) at room temperature. As can be seen, the presence of low-concentration (100 ppm) N₂O in the N₂-O₂ mixture hardly affected the formation behavior of NO and NO₂ in both plasma (**Fig. S1**) and plasma-Al₂O₃ reactors (**Fig. S2**) at room temperature.

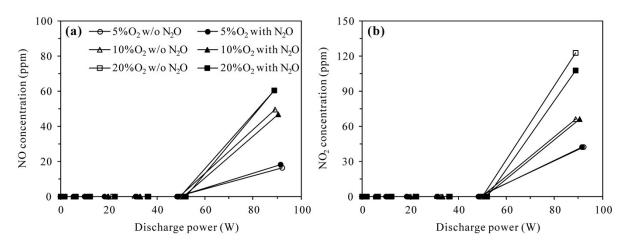
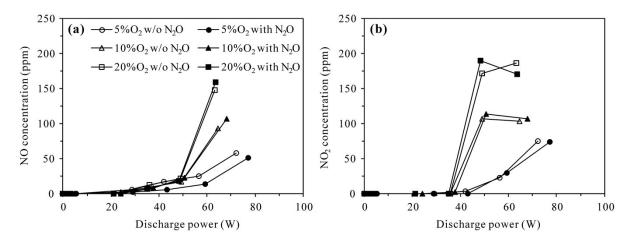
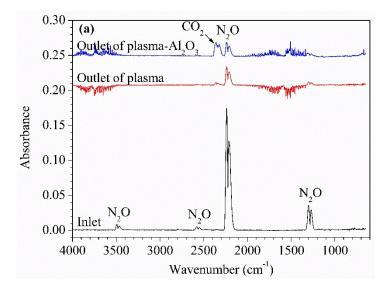



Fig. S1 Effects of N_2O presence in N_2 - O_2 mixture on the production of (a) NO and (b) NO_2 by discharge in plasma reactor at room temperature (inlet N_2O : 0 or 100 ppm; O_2 content: 5%, 10% or 20%).


^aKey Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China. E-mail: fanxing@bjut.edu.cn ^bSchool of Space and Environment, Beihang University, Beijing 100191, China

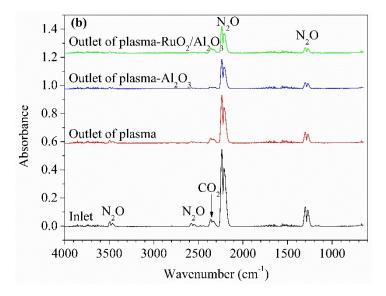


Fig. S2 Effects of N₂O presence in N₂-O₂ mixture on the production of (a) NO and (b) NO₂ by discharge in plasma-Al₂O₃ reactor at room temperature (inlet N₂O: 0 or 100 ppm; O₂ content: 5%, 10% or 20%).

Figure S3

Fig. S3 shows the FT-IR spectra of the reactor inlet and outlet gas for N_2O decomposition under N_2 atmosphere at (a) room temperature and (b) 300 °C. It can be seen that besides the residual N_2O , no other nitrogen oxide species were detected during the plasma and plasma-catalytic decomposition of N_2O under N_2 atmosphere regardless of the reaction temperature.

Fig. S3 FT-IR spectra of the reactor inlet and outlet gas for N_2O decomposition under N_2 atmosphere at (a) room temperature (inlet N_2O : 100 ppm; discharge power: 72 W for the plasma process and 60 W for the plasma-Al₂O₃ process) and (b) 300 °C (inlet N_2O : 400 ppm; discharge power: 22 W for the plasma process and 34 W for the plasma-catalytic process).

Figure S4

Fig. S4 shows the FT-IR spectra of the outlet gas of (a) plasma, (b) plasma-Al₂O₃ and (c) plasma-RuO₂/Al₂O₃ reactors with and without 400 ppm-N₂O in the inlet gas (O₂ content 5%) and before and after discharge at 300 °C. It can be seen that discharge in N₂-O₂ mixture at 300 °C produced N₂O, NO and NO₂ as byproducts no matter the catalyst was introduced or not. When N₂O was introduced into the N₂-O₂ mixture, besides the residual N₂O, NO and NO₂ were also detected at the outlet of plasma and plasma-catalytic reactors in the presence of discharge.

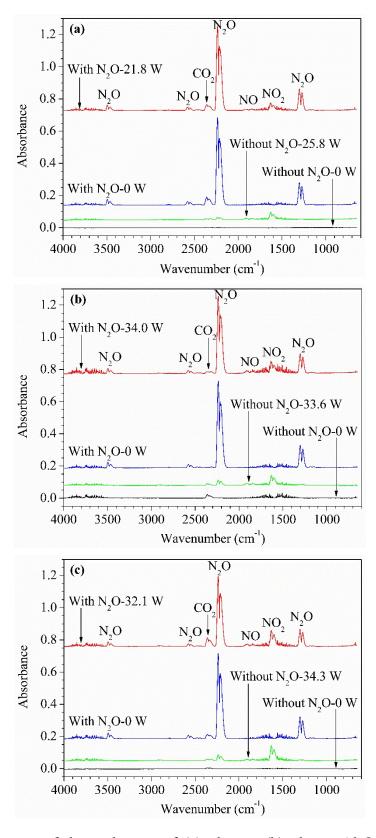


Fig. S4 FT-IR spectra of the outlet gas of (a) plasma, (b) plasma-Al₂O₃ and (c) plasma-RuO₂/Al₂O₃ reactors with and without 400 ppm N₂O in the inlet gas and before and after discharge at 300 °C (O₂ content: 5%).