Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

1

Supporting Information

An Efficient and Ecofriendly Synthesis of Highly Functionalized Pyridones via a One-pot Three-Component Reaction

Hajar Hosseini, Mohammad Bayat*

Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin,

Iran

bayat_mo@yahoo.com

The Table of Contents

Title	Page
Title, author's name, address and table of contents	1-2
Experimental Section; General remarks	2
Figure 1. Structure of all products 4a-l, 5a-e, 6a-e	3
¹ H and ¹³ C NMR and IR and Mass spectrums of 4a	4-7
¹ H and ¹³ C NMR and IR and Mass spectrums of 4b	8-11
¹ H and D ₂ O exchange and ¹³ C NMR and Mass spectrums of $4c$	12-14
1 H and D ₂ O exchange and 13 C NMR and IR and Mass spectrums of 4d	15-18
¹ H and ¹³ C NMR and IR and Mass spectrums of 4e	19-22
¹ H and ¹³ C NMR and IR and Mass spectrums of 4f	23-26
¹ H and ¹³ C NMR and IR and Mass spectrums of 4g	27-30
¹ H and ¹³ C NMR spectrums of 4h	31-32
¹ H and ¹³ C NMR and Mass spectrums of 4i	33-35
¹ H and ¹³ C NMR and IR and Mass spectrums of 4 j	36-39
¹ H and ¹³ C NMR and IR spectrums of 4 k	40-42

¹ H and ¹³ C NMR and IR spectrums of 4 I	43-45
¹ H and D_2O exchange and ¹³ C NMR and IR and Mass spectrums of 5 a	46-49
¹ H and ¹³ C NMR and IR and Mass spectrums of 5b	50-53
¹ H and ¹³ C NMR and IR and Mass spectrums of 5 c	54-57
¹ H and ¹³ C NMR and IR and Mass spectrums of 5d	58-61
¹ H and ¹³ C NMR spectrums of 5 e	62-63
¹ H and ¹³ C NMR and IR and Mass spectrums of 6a	64-67
¹ H and ¹³ C NMR and IR spectrums of 6b	68-70
¹ H and ¹³ C NMR spectrums of 6c	71-72
¹ H and ¹³ C NMR spectrums of 6d	73-74
¹ H and ¹³ C NMR and Mass spectrums of 6e	75-77

Experimental Section

General remarks:

All commercially available reagents and other solvents were purchased and used without further purification. The NMR spectra were recorded with a Bruker DRX-300 Avance instrument instrument (300 MHz for ¹H and 75.4 MHz for ¹³C) with DMSO- d_6 as solvent. Chemical shifts are given in ppm (δ), and coupling constant (J) are reported in hertz (Hz). Melting points were measured with an electrothermal 9100 apparatus. Mass spectra were recorded with an Agilent 5975C VL MSD with Triple-Axis Detector operating at an ionization potential of 70 eV. IR spectra were measured with, Bruker Tensor 27 spectrometer (\bar{v} in cm⁻¹). Elemental analyses for C, H and N were performed using a PerkinElmer 2004 series [II] CHN elemental analyzer.. All NMR spectra at room temperature were determined in DMSO- d_6 . Chemical shifts are reported in parts per million (δ). Coupling constants (J values) are reported in hertz (Hz), and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All chemicals were purchased and were used without further purification.

Figure 1. Structure of all products 4a-l, 5a-e, 6a-e.

¹H NMR of 4a

¹³C NMR of 4a

MS of 4a

¹³C NMR of 4b

IR of 4b

MS of 4b

MS of 4c

¹H NMR of 4d

¹³C NMR of 4d

IR of 4d

MS of 4d

IR of 4e

MS of 4e

IR of 4f

MS of 4f

¹³C NMR of 4g

IR of 4g

MS of 4g

¹H NMR of 4h

¹³C NMR of 4h

¹H NMR of 4i

¹³C NMR of 4i

MS of 4i

¹H NMR of 4j

¹³C NMR of 4j

MS of 4j

¹H NMR of 4k

¹³C NMR of 4k

IR of 4k

¹H NMR of 4l

¹³C NMR of 4l

IR of 4l

¹H NMR of 5a

¹³C NMR of 5a

IR of 5a

Abundance

MS of 5a

¹H NMR of 5b

¹³C NMR of 5b

IR of 5b

MS of 5b

¹H NMR of 5c

¹³C NMR of 5c

IR of 5c

MS of 5c

¹H NMR of 5d

IR of 5d

MS of 5d

¹³C NMR of 5e

¹H NMR of 6a

¹³C NMR of 6a

IR of 6a

MS of 6a

¹³C NMR of 6b

IR of 6b

¹H NMR of 6c

¹³C NMR of 6c

¹H NMR of 6d

¹³C NMR of 6d

¹H NMR of 6e

¹³C NMR of 6e

MS of 6e