Supporting Information

Janus Nanocarriers for Magnetically Targeted and Hyperthermia-Enhanced Curcumin therapy of liver cancer

Hao Xing,^{ab} Zheng Wang,^{*b} Dan Shao,^b Zhimin Chang,^b Mingfeng Ge,^b Li Li,^b Mingdi Wu,^b Zhuangzhi Yan ^{*a} and Wenfei Dong ^{*b}

^a School of Communication and Information Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China

^b CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

*Corresponding Author. Fax: +86 512-69588088; Tel: +86 512-69588307 E-mail address: wangz@sibet.ac.cn, zzyan@shu.edu.cn, wenfeidong@sibet.ac.cn

Keywords: Janus, Curcumin, liver cancer, magnetic target, magnetic hyperthermia therapy

Materials

Polyacrylic acid (PAA, 8 mmol, Mw 1800), iron (III) chloride anhydrous (FeCl₃), diethylene glycol (DEG), cetyltrimethyl ammonium bromide (CTAB), tetraethyl orthosilicate (TEOS, 98%), 3-Aminopropyltriethoxysilane (APS), fluorescein isothiocyanate (FITC), Sulforhodamine B (SRB) were purchased from Sigma-Aldrich. Cur was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Sodium hydroxide (NaOH), ammonium hydroxide (NH₄OH, 28%), ammonium nitrate (NH₄NO₃), anhydrous ethanol, sucrose, succinic anhydride and hydrochloric acid were obtained from Beijing Chemical Reagent Co. (Beijing China). Dulbecco's modified Eagle medium-high glucose (DMEM-HG), RPMI-1640 medium and fetal bovine serum (FBS) were obtained from GIBCO. All reagents were commercially available products of analytical-grade purity and were used without further purification.

Characterization

The histomorphology of the Janus M-MSNs was observed by means of transmission electron microscopy (TEM, JEM-2100, JEOL). The size and distribution of the Janus M-MSNs were determined through a Nano- ZS 90 Nanosizer (Malvern Instruments Ltd., Worcestershire, U.K.). The surface area was characterized via the Brunauer-Emmett-Teller (BET) method. The pore size distribution was calculated by the Barrett-Joyner-Halenda (BJH) method. Magnetization was measured by a TDM-B vibrating sample magnetometer (VSM) at 300 K. The temperature increased by magnetic hyperthermia was assessed by detecting the temperature of RPMI-1640 containing 10% FBS with diverse concentrations of Janus M-MSNs@Cur (0, 6.25, 12.5, 25, 50, 100 mg mL⁻¹) which was meditated by an alternative current magnetic field (ACMF).

Statistical analysis

Data were represented as the mean \pm SD values. The statistical significance of the data was determined by Student's t-test.

Figure Caption

Figure 1S. Average size of Janus M-MSNs for 24, 48 and 72 hours.

Figure 2S. Pore size distribution of Janus M-MSNs.

Figure 3S. pH-responsive Cur-release fashion of Janus M-MSNs-Cur. (A) pH- responsive Currelease profiles of Janus M-MSNs-Cur. (B) Quantitative analysis of the biodistribution of Cur in free Cur or Janus M-MSNs-Cur treated HepG2 cells or HL-7702 cells in the absence or presence of EMF for 3 h. (2.5 h of incubation followed by 0.5 h exposure of magnetic field in EMF treated group). Data represent three separate experiments and are presented as the mean \pm SD *P < 0.05 vs without EMF group in HepG2 cells; #P < 0.05 vs with or without EMF group in HepG2 cells