Supporting Information

Polyacrylamide exotemplate-assisted synthesis of hierarchically porous nanostructured TiO₂ macrobeads for efficient photodegradation of organic dyes and microbes

Muhammad Ahmad Mudassir,^{†,‡,§} Syed Zajif Hussain,[†] Mishal Khan,^T Syeda Tasmia Asma,^{†,¶} Zafar Iqbal,[†] Zille Huma,[†] Najeeb Ullah,[¥] Haifei Zhang,[§] Tariq Mahmood Ansari,^{*,‡} and Irshad Hussain^{*,†,¥}

[†]Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan

[‡]Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan - 60800, Pakistan

[§]Department of Chemistry, University of Liverpool, Oxford Street, Liverpool - L69 3BX, U.K.

Institute of Industrial Biotechnology (IIB), GC University Lahore - 54000, Pakistan

^TPreston Institute of Nano Science & Technology (PINSAT), Islamabad, Pakistan

[¥]US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET), Peshawar, Pakistan

*Corresponding authors' email addresses: <u>ihussain@lums.edu.pk</u>; <u>drtariq2000@gmail.com</u>

Figure S1. (A) UV–vis diffuse reflectance spectra and (B) plot of Kubelka-Munk function ($F(R)hv^{0.5}$) versus photon energy (Eg) for the bandgap measurement of (a) PAM–TiO₂ NC, and (b) porous NS TiO₂ macrobeads.

Figure S2. SEM images (cross-sectional view) of (A–C) PAM showing greater macroporosity, (D–F) PAM–TiO₂ NC macrobeads showing (D,E) blocked pores and (F) TiO₂ particles.

Figure S3. Pore size distribution of (A) PAM, (B) PAM-TiO₂ NC and (C) porous NS TiO₂ macrobeads. (D) Particle size distribution of TiO₂ nanobuilding blocks. ImageJ software was used to measure the average pore size distribution of beads and particle size of TiO₂ nanobuilding units (NBUs).

Figure S4. Removal efficiency (mg/g) of porous NS TiO_2 macrobeads (A) without H_2O_2 , and (B) with H_2O_2 .

Figure S5. Time-wise bactericidal efficiencies (%) of 0.2 mg/mL dosage of PAM, PAM–TiO₂ NC and porous NS TiO₂ macrobeads against *S. aureus* under (A) UV light and in the (B) dark, and against *E. coli* under (C) UV light and in the (D) dark.

Figure S6. Fluorescence spectra of the irradiated (a) TA (without TiO₂) and TA with TiO₂ samples.

Figure S7. SEM image of a single NS TiO_2 macrobead. (B) Digital photograph of the NS TiO_2 macrobeads (zoomed-in view in the inset) showing their integrity in MB aqueous solution.

Material	Removal Efficiency	k (min ⁻¹)	Operational Parameters				D.C.
			mg of Catalyst	MB Conc.	mL of MB	min	Ref.
commercial TiO2 powders	48.2%	—	15	20 ppm	50	70	1
CdSe-TiO ₂ nanocrystals	67%	0.004	9	10 ppm	100	60	2
TiO ₂ -polymer nanofibers	70%	—	—	1×10 ⁻⁵ M	200	180	3
TiO ₂ -based coatings	71.5%	—	10	2×10 ^{−5} M	10	180	4
Ag NPs loaded TiO ₂ NTs	81.2%	—	20	20 ppm	60	150	5
PoPD/TiO ₂ NCs	85.9%	0.010	30	10 ppm	30	180	6
commercial TiO2 NPs	90%	0.025	150	150 ppm	300	360	7
anatase nano-TiO ₂	90.3%	0.035	50	4×10-5 M	100	60	8
TiO ₂ hollow microspheres	92%	—	100	15 ppm	500	360	9
TiO ₂ @rGO NCs	92%	0.018	200	_	5	120	10
Ag@Fe ₃ O ₄ @SiO ₂ @TiO ₂	95% 51 mg/g	-	10	50 ppm	20	240	11
JHP-TiO2-Au microswimmer	97%	_	1	10 ⁻⁶ M	_	60	12
chargeable TiO ₂ NPs	97%	0.018	100	10 ppm	600	180	13
electrospun fiber embedding TiO ₂ [(EPF(2/1)–TiO ₂]	97% (total)	0.045 0.050	—	20 μM 10 μM	-	330	14
porous TiO2 nanowires	97.98%	—	15	20 ppm	50	56	15
aerochitin-TiO2 composite	98%	0.018	10	10 ppm	10	200	16
NS TiO ₂ macrobeads (without H_2O_2)	86.87% (total) 60.89 mg/g	0.030	5 3	25 ppm	10	60	This
NS TiO ₂ macrobeads (with H_2O_2)	98.53% (total) 64.24 mg/g	0.050	5 3	25 ppm	10	60	study

Table S1. A comparison for the removal of methylene blue by different TiO₂-based materials.

Total means the cumulative efficiency achieved under both the dark and UV light conditions; *K* is the reaction rate constant; MB stands for methylene blue; conc. stands for concentration; ref. stands for references; NTs, NPs, NCs and NS stand for nanotubes, nanoparticles, nanocomposites and nanostructured, respectively.

References

- 1. J. Huang, H. Ren, X. Liu, X. Li and J.-J. Shim, Superlattices Microstruct., 2015, 81, 16-25.
- 2. I. A. Mir, I. Singh, B. Birajdar and K. Rawat, Water Conserv. Sci. Eng., 2017, 2, 43-50.
- 3. A. Abdal-hay, A. S. Hamdy Makhlouf and K. A. Khalil, ACS Appl. Mater. Interfaces, 2015, 7, 13329-13341.
- F. Xu, T. Wang, H. Chen, J. Bohling, A. M. Maurice, L. Wu and S. Zhou, *Prog. Org. Coat.*, 2017, **113**, 15-24.
- P. Van Viet, B. T. Phan, D. Mott, S. Maenosono, T. T. Sang and C. M. Thi, *J. Photochem. Photobiol.*, *A.*, 2018, **352**, 106-112.
- C. Yang, M. Zhang, W. Dong, G. Cui, Z. Ren and W. Wang, *PloS one*, 2017, 12, e0174104.
- M. Subramaniam, P. Goh, N. Abdullah, W. Lau, B. Ng and A. Ismail, J. Nanopart. Res., 2017, 19, 220.
- J. Zhang, B. Wu, L. Huang, P. Liu, X. Wang, Z. Lu, G. Xu, E. Zhang, H. Wang and Z. Kong, J. Alloy. Compd., 2016, 661, 441-447.
- J. H. Pan, X. Zhang, A. J. Du, D. D. Sun and J. O. Leckie, J. Am. Chem. Soc., 2008, 130, 11256-11257.
- M. Sohail, H. Xue, Q. Jiao, H. Li, K. Khan, S. Wang and Y. Zhao, *Mater. Res. Bull.*, 2017, 90, 125-130.
- J. Su, Y. Zhang, S. Xu, S. Wang, H. Ding, S. Pan, G. Wang, G. Li and H. Zhao, *Nanoscale*, 2014, 6, 5181-5192.
- 12. V. Sridhar, B. W. Park and M. Sitti, Adv. Funct. Mater., 2018, 28, 1704902.
- F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A. A. Nazeer, M. O. Amin and M. Madkour, *Sci Rep.*, 2018, 8, 7104.
- C.-G. Lee, H. Javed, D. Zhang, J.-H. Kim, P. Westerhoff, Q. Li and P. J. Alvarez, *Environ. Sci. Technol.*, 2018, **52**, 4285-4293.
- 15. Y. Tang, H. Ren and J. Huang, Front. Optoelectron., 2017, 10, 395-401.
- 16. R. S. Dassanayake, E. Rajakaruna and N. Abidi, J. Appl. Polym. Sci., 2018, 135, 45908.